
Investigating Weather Shocks and the Farmers’ Perceptions of
Climate Change in the American Farmland Market

Matthew Utterback
Cornell University

MS Applied Economics and Management, August 2017
mlu8@cornell.edu

Faculty Advisors:
Ariel Ortiz - Bobea

Jennifer Ifft



Investigating Weather Shocks and Farmers’ Perceptions of Climate Change

Abstract
U.S. agriculture is likely to be affected by climate change due to its inherent reliance on

climatic inputs. An important difference among methods of climate change impact assess-

ment is the treatment of farmer adaptation. This study posits that farmers must perceive

the climate is changing as a prerequisite of engaging in adaptive strategies. I test this by

exploiting the effect of random weather fluctuations on farm real estate. A theoretical model

clarifies how weather shocks could affect farmland values, in which I consider farmers as

Bayesian learners. I then rely on a distributed lag model to test the hypothesis. The re-

sults suggest that farmers do not perceive recent extreme weather as indications of sizable

upcoming changes in farm profitability. I find no evidence that weather shocks have affected

the farmland market. These findings are robust to geographic and temporal subdivisions.
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Introduction
Agriculture is arguably one of the most researched sectors in the climate change im-

pacts literature (Ortiz-Bobea, 2013). Over the last three decades, statistical and economet-

ric approaches have become increasingly popular among economists in contrast to earlier

biophysical process counterparts.1 Significant disagreement persists in terms of the sign

and magnitude of such impact on the agricultural sector (Fisher, Schlenker, Haneman, and

Roberts, 2012).

This disagreement derives from the various ways in which economists model farmer adap-

tation to climate change, resulting in serious disparities. The climate change impact litera-

ture has progressed from explicitly limiting farmer adaptation (via the production function

and crop simulation method) to implicitly assuming the farmer has adapted to their current

climate (via the Ricardian method) and recently modeling farmer adaptation in response to

weather shocks or assuming that the farmer is forward-looking.

Despite these advances and improved usages of observational data to estimate the hypo-

thetical impact of a change in climate on agricultural production or society’s welfare, there

is still a gap in the literature: the modeling of whether or not a farmer perceives (believes)

that the climate has changed. I therefore construct an additional test to explore if farmers’

perceptions of their local climate has been changing.

To be more explicit, I rely on a long panel of county-level farmland values from the

U.S. Census (1950 - 2012) and on detailed weather data from Schlenker and Roberts (2009)

to develop a distributed lag model.2 This model allows me to investigate if a farmer’s

perceptions of weather is based on not only present day experience, but on recent past

experiences as well. I part from previous methods that have modeled farmers as forward-

looking, by constructing a panel of survey and fine-scale weather data, where causality is

1Much of the economic literature suggests that in the short term, producers will continue to adapt to
weather changes and shocks. In the longer term, however, these adaptive strategies will likely no longer
buffer producers and/or consumers from significant welfare loss (Hatfield et al., 2014).

2It should be noted that this study is not a damage study.
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based on weather shocks. Although the usage of survey data to model farmers’ perceptions

of climate change is not new, by restricting my sample to only include the agricultural census

and not an aggregate of surveys, I mitigate the issue of extrapolating farmers’ perceptions

from that of public opinion.

Moreover, I argue that by choosing to measure changes in farmland value over changes

in crop yields, I will more easily be able to detect if changes in our dependent variable are

reflective of a change in the farmer’s perceptions, and not worry about disentangling the

biological response from the behavioral one, which would be imperative, were I to use crop

yields.

This study contributes to the literature on adjustment costs where the farmer is assumed

to be a Bayesian learner. Thus from a policy perspective, this study provides a template

to measure the price signal that weather shocks have on farmland real-estate, and provides

clarification on whether or not a market failure has occurred, in which case government

intervention is justified.

Literature Review
Methods to model the perceptions regarding climate change have included stated prefer-

ence and revealed preference approaches. Those that have utilized the former have oriented

their analysis around stated preference survey results. However, there are no recurrent

surveys that include the agricultural sector’s perceptions of climate change in the United

States.3 And of those surveys that do target this stakeholder group, the scope is limited, and

results can be difficult to interpret. For instance, Arbuckle et al.(2013) find that although

Iowa is one of the states where temperature has changed the least in recent years, 65% of

the study’s farmers in a recent survey indicated that they believe that “climate change is

occurring” but only 35% of them were concerned about the impacts of climate change on

their farm operation.

An alternative approach to answer the question of whether farmers think the climate is
3These include the annual Gallup Environmental Survey, the Yale Project on Climate Change Communica-
tion, and the National Survey of American Public Opinion On Climate Change.
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changing is to rely on farmer-revealed preferences, which are implicitly embedded in obser-

vational data. With farm real estate representing much of the value of the U.S. farm sector

assets, economists have sought to understand how weather and climate impact the farmland

market by conducting land value studies, where the value of land is equal to the present

discounted value of the future stream of profits that could be generated with a given parcel

of land (Nickerson et al., 2012). The theoretical foundation for nearly all of these studies is

based on either the net present value (NPV) method or the hedonic pricing method. Below,

a brief overview of the empirical strategies is reviewed.

The seminal paper by Mendelsohn, Nordhaus, and Shaw (1994) – hereafter MNS (1994)

– introduced the Ricardian approach, in which the economic impacts of climate change on

U.S. agriculture were estimated with a hedonic method. This novel approach consisted of a

cross-sectional regression of land values on historical climate variables. Previous methods to

measure the economic impact of climate change on agriculture assumed farmers had a lim-

ited range of adaptation strategies to adopt.4 MNS (1994) implicitly assumed the opposite:

a farmer has full selectivity of adaptation strategies to employ. The chief concern of the Ri-

cardian approach is that it is likely that these estimates suffer from omitted variable bias due

to collinearity between climate variables and time-invariant unobservables (Schlenker, Hane-

mann, and Fisher, 2006; Deschênes and Greenstone, 2007; Fisher, Hanemann, Schlenker,

and Roberts, 2012).

The comparison of climate change impact estimates through the inclusion and omission

of control variables is one method to mitigate and detect time-invariant omitted variable

bias. Two prominent control variables found in climate change impact literature are irri-

gation and potential land development. Each has been empirically shown to significantly

influence farmland. Plantinga et al.(2002) find that farmland close to urban areas inflates

land values, because of the option value of land for urban development. Concluding that the

4The earliest and most comprehensive studies to estimate the impacts of climate change on agriculture were
via the production function approach (see Adams, 1989; Kaiser et al.,1993). This approach examined the
effect of weather on specific crop yields.
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highly subsidized price of irrigated water and its uncertain future availability biases pooled

estimates, Schlenker,Hanemann, and Fisher (2005) emphasize the importance of accounting

for irrigation in the Ricardian model.5 The usage of control variables does not inform us of

the strength of the collinearity between climate variables and unobservables, and as such it

is not a definitive solution to time-invariant omitted variable bias (Ortiz-Bobea, 2016).

More recent studies have shifted from a cross-sectional to a panel method approach to

address this time-invariant omitted variable bias, and the relationship between agricultural

output and weather variation. Instead of long-run climate averages being the explanatory

variables of interest, year-to-year changes in temperature, precipitation, and other climatic

variables tend to become the focus. The usage of weather shocks to isolate impact of climate

variables on agriculture is a specific type of panel method approach that has strong identi-

fication properties. Using exogenous variation in weather outcomes over time (and within

a given spatial location), this approach has the power to causatively identify the effects

of weather variation on agricultural output. A risk of using this approach is the inclusion

of time-varying observables. Although the inclusion of these can absorb residual variation,

the empiricist can still run into the omitted variable bias problem, and the over-controlling

problem that also complicates the cross-sectional approach (Dell et al., 2014; Hsiang, 2016).6

The continued debate on how climate change will impact agriculture can in part be

attributed to how these revealed-preference studies have reflected adaptation in their the-

oretical and empirical application. Adaptation in climate change literature signifies the

changing of one’s behavior in response to or in expectation of some climatic phenomena, so

that damages from said phenomena are minimized or the positive benefits are maximized

(Tol et al., 1998).

An assumption in the Ricardian literature is that farmers have adapted to their local

5In their study, Schlenker, Hanemann, and Fisher (2005) define an irrigated county is one where at least
20 percent of said county’s harvested cropland is irrigated. Those counties with less than 20 percent of
irrigated farmland are referred to as dry counties.

6Hsiang (2016) notes that time-varying omitted variable bias arises if there are (important) time-varying
factors that influence both the outcome and are correlated with climate variables, after being conditioned.
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climatic conditions. This implies that they are exhibiting profit-maximizing behavior. How-

ever, behavioral decision research over the last 40 years provides a series of lessons about

the importance of affect in perception of risk and in decisions to take actions that reduce or

managed perceived risks. There is evidence from this field of research which suggests that

worry drives risk management decisions (Weber, 2006). Hence if a farmer fails to be alarmed

about a change in the climate or the risk it poses to them, they shall not take precautions.

How farmers perceive the risk of potential climate change to (their) agricultural pro-

ductivity plays a significant role when it comes to empirically trying to deduce if farmers

have had the foresight and have planned for said potential climate change. Shrader (2016)

highlights the fact that a significant amount of what is known in terms of climate change

impacts on the economy, stems from analysis where the adaptation is ex post to experienced

weather. Alternatively, if we assume that the economic agent is forward-looking, an ex ante

adjustment would be made in anticipation of climate change. A recent study by Severen et

al.(2016) is firmly grounded on this concept that modern-day farmers take into consideration

not only historical and current weather events, but make use of climate projections and other

information sets that relay the message of warnings and climate change impacts.

This study contests that within the last thirty years, there has been a distinctive shift

in the American agricultural sector, with evidence that farmers have been acknowledging

that climate change exists, and is reflected as changes in farmland value. According to the

authors, this shift in market behaviors corresponds to the proliferous amount of scientific

publications in support of climate change that began in the 1990s, notably with the release of

the first Intergovernmental Panel of Climate Change (IPCC) report and usage of the Hadley

General Circulation Model (HGCM3). Severen et al.(2016) conclude that since 1987, the

farmland market has been capitalizing the farmer’s belief that the climate is changing.

The capitalization of potential future climate change in agricultural land value relates

to a farmer’s expectations of whether or not the climate is or will change. With significant

levels of uncertainty about climate change, the usage of a Bayesian learning model provides a
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common foundation for modeling the updating of an individual’s beliefs about future climate.

As Lybbert et al.(2007) explain, people typically start off with an initial set of beliefs about

the likelihood of a specific event occurring. These beliefs are consequently updated when they

receive new information pertaining to that event. The power of this learning model resides

in its ability to make inferences in the face of uncertainty (Kelly,Kolstad, and Mitchell, 2005;

Deryugina, 2013).7

Yet for any given event, not all economic agents face the same level of risk and uncertainty.

Hirshleifer and Riley(1992) illustrate how the confidence of an economic agent’s prior belief

can determine whether or not they receive new information in face of this uncertainty, and the

impact that this information has on the updating of their beliefs.8 Specifically, all else equal,

the greater the confidence in their prior beliefs, a stochastic shock will be more impactful on

their belief updating, relative to individuals who have less confidence in their prior.

The channels through which these weather shocks might affect farmland values is clarified

by the theoretical model, below. The model posits that, with regard to their climate priors,

farmers are Bayesian in their learning process, and this learning stems primarily from realized

weather. Moreover, I show that it is the variance of weather realizations that modulates how

long it takes for a farmer to realize that the weather has changed.

Theory
Capitalization Model

According to the United States Department of Agriculture (USDA), in recent years, farm

real estate (land and structures) has typically accounted for about four-fifths of the total

value of U.S. farm assets.9 This farmland value embodies the discounted future streams of

rent from that land, hence reflecting that farmer’s expectations of future returns to that

land.

7Criticisms of the Bayesian learning method with respect to climate change impact literature, include whether
or not farmers are myopic, in which case farmers are not Bayesian learners.

8Confidence in this context can be understood as the tightness in the prior probability distribution.
9For more details on farmland real estate, see https://www.ers.usda.gov/topics/farm-economy/land-use-
land-value-tenure/farmland-value.
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By inserting farmland value into a capitalization model, we are able to understand how a

change in local weather, a weather shock, will affect that farmland market. This is assuming

that weather shock, which is somewhat discontinuous in space, is used as an exogenous

source of variation in the farmer’s prior belief about the local climate. Hence farmland value

can be written in terms of a capitalization model as Lit =
∑∞

t=0
E[πit]
[1+r]t

.

The term Lit represents the value per acre of farmland for farmer i in period t, and is equal

to the sum of expected discount future returns, E is the expectations operator conditioned

on information available for farmer i at time t, r is the discount rate, and lastly π represents

maximum profit. Let zit represent the random variable of observed weather, where zit =

[temperatureit, precipitationit]. Without loss of generality, suppose that weather is drawn

from a normal distribution with mean µ and variance σ2. A key component in determining

how farmers process unusual weather events depends on how variable the underlying climatic

distribution is. I define a measure of “precision" for observed weather as ρ = 1
σ2 .

Considering that weather is a direct input for agricultural production, I can illustrate

farmer’s expected profit as the optimization problem:

E[π(zit, pit, wit) = maximize
xit,yit

pitf(xit, zit)− witxit]

subject to yit = f(xit, zit)

(1)

where expected profit for i in time period t consists of three arguments: output prices pit,

input prices wit, and observed weather zit, respectively.10 The term y represents a vector of

agricultural output, while x is a vector of input variables. Furthermore, the farmer does not

believe the distribution of weather has changed relative to the previous time period.

Bayesian Learning Model

Now consider the case where the distribution of weather changes, such that the true

mean of weather shifts from µ → µ̃. To simplify the exposition, I assume that climate

change is affecting the mean weather, not the variance of weather, which the farmer knows,

and experiences zit ∼ N (µ̃, σ2) each year (Burke and Emerick, 2016). Assume that a farmer

10Similar to Kelly, Kolstad, and Mitchell (2005), I assume that the input and output prices which the farmer
faces are not affected by weather and remain constant.
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has a prior belief about the mean weather at any point in time, θ(t). Let the initial prior θ0 be

based on historical record. Therefore in time period t, farmer i believes that µit ∼ N (θit,
1
γit
),

where γit represents the farmer’s precision (confidence) that θit = µ̃it. If a farmer had full

information about the change in climate, then γit =∞ and the farmer’s confidence in their

prior belief of mean weather would be zero, leading them to quickly adapt.

In reality, however, farmers are likely to update their priors about the climate over time as

changing weather patterns are realized, only modifying their behavior after obtaining strong

enough information that the climate has changed. For example, suppose that the mean

precipitation in May has increased by 4 inches. As the years go by, the farmer gradually

changes his estimate of the mean precipitation. However, until the farmer is completely

informed of the new precipitation, he will continue to lose profits as a consequence of making

sub-optimal input and production decisions (Kelly et al., 1999). To model this change in

the farmer’s prior, I assume that the farmer follows a Bayesian learning process. This

assumption provides us a template to model how economic agents update their beliefs in the

face of uncertain events like changes in weather fluctuations.

According to Bayes rule, after the farmer observes zi,t+1 (see Cyert and DeGroot, 1974;

Kelly, Kolstad, and Mitchell, 2005), they will update their prior θit to generate the posterior

θi,T , where T represents time-periods. This posterior estimate is a weighted average of prior

beliefs about mean weather and realized weather.

θi,T =
γitθit + Tρzit
γit + Tρ

(2)

The weights associated with the farmer’s prior and observed weather are γit and ρ, re-

spectively. The term γit represents the farmer’s confidence that their prior belief of mean is

equal to the mean climate µ̃. In contrast, ρ does not represent a confidence, but the variance

of weather events. Note that the denominator in (2) represents the posterior precision after

T years. Following Burke and Emerick (2016), I assume that this change in the mean is not

accompanied by a change in the variance. Hence, I do not examine the evolution of how
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a farmer’s confidence (γit) changes over time in the long term. Accordingly, I redefine the

farmer’s prior belief to be normally distributed and consisting of their prior belief of mean

weather and the variance of observed weather, such that µit ∼ N (θit, σ
2
i ).

To reflect this updating in (2), I can revise expected profit to be equal to the follow-

ing: E[π(zit)] =
∫
π(zit)N(θit, σ

2
i )dzit. This formula states that the expected returns from

observed weather are equal to the infinitesimal sum of the distribution of weather π(zit),

which represents the monetary value of observed weather, and N(θit, σ
2
i ) which represents

the density of the farmer’s prior belief of the mean weather.

Connectivity between land value, expected profit, and a farmer’s updating of prior beliefs

is now hopefully evident to the reader. Taking the derivative of our expected profit equation

with respect to weather and letting λ equal the discount factor of 1
(1+r)t

, a change in land

value after a weather shock can be written as:

∂λLit
∂zit

= λ

∫
∂f(zit

∂zit

∂N(θit, σ
2
i )

∂zit
dzit (3)

which states that a shock in observed weather leads to a change in land value through a

change in discounted expected profit, integrated over all weather outcomes.11

A crucial point to highlight in (3) is the Bayesian learning process, which is embedded

in θit. For illustrative purposes, let t = 0 demarcate the current time period and t = 1

represent the time period immediately after a weather shock. Referring to (3), the change in

this prior after the weather shock is equal to ∂θ1
∂z

= ρ
γ0+ρ

, which illustrates that the variance

of weather modulates how a farmer’s prior changes with a shock to weather.

Figure 1 provides a visual representation to better understand how a greater variance in

the weather distribution can influence a farmer’s recognition that the climate has changed.

In Consider farmers in two neighboring counties i and j , where ρi0 < ρj0. After a weather

shock, ceteris paribus, then in the next time we can expect farmer j to receive a more

impactful lesson from this weather shock. The curves in Figure 1 represent two competing

11Where a weather shock can be defined as a change in the distribution of observed weather.
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states of nature – observed weather for farmer i (in purple) and observed weather for farmer

j (in orange), but both experience mean weather centered at µ. The areas shaded in red

represent exposure to extreme hot days, whereas the areas shaded in blue represent exposure

to extreme cold days. The density of exposure to these extreme days is greater for farmer j

than for neighboring farmer i. As such, after a weather shock, the type I and type II errors

for farmer j are larger than the corresponding errors belonging to farmer i in part because

of farmer j ’s larger weather variance. This translates into larger adjustment costs for farmer

j. States of Nature for Two Farmers

Notes: This figure identifies how two farmers with different baseline climates, have different exposures to extreme hot (shaded
in red) and extreme cold (shaded in blue) days. Notice that exposure to extreme days for farmer j is actually the combination
of the two textures of the same color.

Figure 1: Theoretical Distributions for Two Farmers with Different Variances of Weather
Realizations

Data
Sample Determination

In the agricultural economic literature, development pressure and agricultural irrigation

are recognized to be two potentially important determinants of farmland value. As such,

following Schlenker and Roberts (2006), I confine my sample to counties in the contiguous

United States that are neither irrigated or urban.
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Influence of Development Pressure

Noting that land prices reflect not only the current uses of land, but potential uses as

well, Plantinga et al.(2002) find that over 80 percent of farmland value close to New York

City is attributable to the option value of developing land for urban uses. Hence, the impact

of weather shocks and climate change will likely have a different effect on urban land prices

and surrounding farmland, than rural areas. Following the literature, a county is considered

to be urban if it has population density greater than 400 persons per square mile.

Influence of Irrigated Farmland

It is widely known that a majority of U.S. crops require at least 20 inches of water a

year to grow. In the contiguous United States, a distinctive geographic boundary exists to

delineate regions that do and do not receive this minimum requirement: the 100th meridian.

Commonly referred to as the “rainline”, agriculture is able to occur without supplementary

irrigation water to the right (east), whereas to the west (left) it generally cannot. Hence,

the usage of irrigated water for farming operations severs the direct connection between that

farmer’s current climate, specifically precipitation and temperature, and farm-level economic

outcome.

Figure 2 displays a map of the study’s sample area, where counties in the contiguous

United States were omitted if they can be classified to be irrigated or urban. This panel of

data consists of county level observations in the contiguous United States from 1950 to 2012.

All monetary values are expressed in constant 2012 United States Dollars (USD) using

the GDP implicit price deflator. A brief overview of the three families of data types – weather

and climate, agricultural, and socio-economic – is discussed.

Weather and Climate Data

The weather and climate data come from two sources. The primary dataset is from

Schlenker and Roberts (2009), and consists of interpolated monthly mean, maximum, and

minimum temperature and precipitation amounts for 2.5 × 2.5 - mile grid cells across the

contiguous United States from 1950 to 2005. The climate and weather data for the remaining
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(a) (b)

(c) (d)

Observations

Missing

Farmland

Corn and Farmland

Urban

Observations

Missing

High Variability

Low Variability

Urban

Observations

Missing

North

South

Urban

Observations

Missing

East

West

Urban

Notes: Figure a identifies the parent dataset. Farmland counties are the combined orange and blue counties, and is a panel of
N=2,193 and T=14. The corn counties are in blue, with N=631 and T=63. Figure b corresponds to the geographic division of
areas into high and low climate variability, based on the Coefficient of Variation for Degree Days > 30◦C. Figure c shows the
geographic subsamples into North-South divisions, and Figure d, the East-West divisions. Counties in red are urban, while
counties in black are missing.

Figure 2: Parent Dataset and Regional Divisions

years of this study (2006-2012) are from PRISM. The PRISM data is aggregated to the

county level in order to match with agricultural areas.12

12Special thanks to Ortiz-Bobea (2016) who accomplishes this task by weighting each native PRISM grid by
the amount of cropland it contains based on the USDA Cropland Data Layer. The Cropland Data Layer
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Socio-economic

County level population data comes from both the United States Census and Intercensal

Estimates. However, these data are only available between 1970 and 2012. Consequently, the

remaining population data is obtained from Haines, Fishback, and Rhodes (2012). Because

intercensal estimates before 1970 are not available, county populations for study years are

interpolated between decennial censuses using a natural spline.

Agricultural

The agricultural data for this study come from two sources: Haines, Fishback, and Rhode

(2012), and the United States Department of Agriculture National Agricultural Statistics

Service. The data from Haines, Fishback and Rhodes (2012), is a collection of US Census

of Agriculture data, whereas the NASS data used in this study consists of a 63 - year panel

(1950 - 2012) of corn yields.

The USDA Agricultural Census dataset provides a comprehensive overview of the num-

ber, types, output, and prices of various agricultural products, as well as information on the

amount, expenses, sales, values, and production of machinery. The surveyed population are

operators of farms and ranches who have sold at least $1,000 of agricultural products during

that census year.

There are a total of fourteen agricultural censuses (beginning with the 1950 and ending

with the 2012 agricultural census) included in this analysis. The number of eastern non-

urban counties with non-missing farmland data is equal to 2,193 for all census years.

Dependent Variable

The primary dependent variable used in this study is the value of land and buildings (USD

per acre), which is obtained by asking farmers their estimate of the current market value of

their land and buildings. Like MNS (1994), I interpret the value of land and buildings to be

(CDL) provides 30-meter resolution land cover pixels, which correspond to over 100 land classifications.
The weights are based on cropland pixel counts falling within each PRISM data grid. The average of the
CDL cropland counts for years 2008-2014 were used.

13



Investigating Weather Shocks and Farmers’ Perceptions of Climate Change

a proxy of farmland value.

Independent Variables

Agronomists have shown that plant growth depends on the cumulative exposure to heat

and precipitation during the growing season (Deschênes and Greenstone, 2007). There is

a threshold of temperatures - an upper and lower bounds - which crops can absorb heat

and benefit. Exceeding this upper bound has adverse impacts on both the crop’s yield and

health. I follow the standard method to capture this nonlinearity by utilizing degree days:

the amount of time a crop spends between its upper and lower bounds.

Degree days are typically assigned to one of two categories: normal degree days (which

fall between the range of that crop’s upper and lower bounds), and harmful degree days,

temperatures which exceed the upper bounds. Given that the upper thresholds for the three

most important cash crops of corn,soy, and cotton have upper temperature bounds of 29◦C,

30◦C, and 32◦C, two common combinations of degree day assignments are 1) degree days

10− 30◦C with harmful degree days equal to above 30◦C, and 2) degree days 8− 32◦C and

harmful degree days of degree days above 32◦C. I test the sensitivity of the temperature

effect on land value by employing both of these alternative degree day specifications.

Auffhammer et al.(2013) emphasize that because precipitation and temperature are of-

ten correlated, the coefficient on precipitation will measure the combined effect of the two

weather variables on a model’s dependent variable. In order to obtain unbiased estimates

of the marginal effects of precipitation and temperature on farmland values, growing sea-

son precipitation and quadratic growing season precipitation are included as independent

variables.

Summary Statistics

Table 1 provides a snapshot of our panel of data, highlighting the summary statistics of

agricultural and weather variables.
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Table 1: Agricultural and Climate Variable Summary Statistics

Variable µ min max σ
Farmland Value 1,755.35 50.39 21,807.05 1,325.92

Farmland Acres 240.38 0 217.6 181.5

Degree Days 8− 32◦C 2,192.43 928.4 3,160.65 349.62

Degree Days 10− 30◦C 1,652.06 686.5 2,234.35 230.69

Degree Days > 30◦C 70.43 0 498.62 66.82

Degree Days > 32◦C 31.36 0 325.8 39.2

Precipitation 581.52 166.44 1,398.75 149.74

Notes: Values are county averages of a balanced farmland panel, where N=2,193 and T=14, east of the
100th meridian. Counties were omitted if their population density was greater than 400 persons per square
mile. The growing season is April through September. Farmland Value is reported in constant 2012 USD,
Farmland Acres are in thousands of acres, and Precipitation is reported in millimeters.

Empirical Approach
To detect if weather shocks in the United States have been capitalized into the farmland

market, I employ two models utilizing weather variation in a panel data setting across time

to estimate the sensitivity of weather effects on farmland value. A distinctive advantage

of using a panel method is that year-to-year variations in weather are plausibly random to

farmers.

The first model is a simple OLS regression that exploits random variation in yearly

weather observations is as follows:

yit = αi + τt + zit + pit + p2it + εst (4)

where yit, is the natural log of farmland value for a county i in time period t. The terms αi

and τt represent county effect and time effects, respectively. Whereas the county effect will

absorb any fixed spatial, time-invariant characteristics (such as soil quality), the time effect

will neutralize any common shocks and thus help ensure that relationships of interest are

identified from idiosyncratic local shocks. It should be noted that while year and location

fixed effects may capture all time-invariant and time-varying confounding factors, a large

amount of variation is also captured and hence amplifies measurement error. The error
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term εst , corrects for spatial correlation by clustering standard errors by state and year.

The term zit represents temperature realizations while the two terms pit and p2it represent

precipitation and quadratic precipitation for the growing season. Auffhammer et al.(2013)

emphasize that because precipitation and temperature are often correlated, the coefficient

on precipitation will measure the combined effect of the two weather variables on a model’s

dependent variable. Hence, in order to obtain unbiased estimates of marginal effects of

precipitation and temperature on farmland value, both must be include in our regression.

Without the inclusion of lagged weather variables, one might incorrectly conclude that a

regression’s outcome is a permanent effect instead of a transient one. To investigate if the

baseline model’s results represent permanent or temporary effects, a finite distributed lag

model is estimated where:

yit = αi + τt +
n=N∑
n=0

βnX
′
i,t−n + εst (5)

where yit represents the value of agricultural land per acre in county i for year t. The

term X ′i,t−n is a vector of temperature and quadratic precipitation realizations. The term

αi represents a full set of county fixed effects, whereas the term τt identifies the year effect.

Notice the n subscript for the X ′i,t−n vector, where n=N represents the total number of

lags considered. By looking at a number of lagged weather variables, we can determine

if changes in farmland value over time is a function of current and past weather events

X ′it, X
′
i,t−1, ...X

′
i,t−n , where the last term X ′i,t−n indicates that after N lags, the effect of

previous weather events on current land and building values has been exhausted. It is often

a concern that X ′it and X ′i,t−1 , along with all other pairs of lags will be highly collinear.

However, because weather fluctuations are considered random at a specific location, and

tend not to be serially correlated in consecutive years, I believe the concern of collinearity

is mitigated. This is assuming that the number of lags have been correctly specified. If

they have been misspecified, then the lag distribution will be inaccurate and the cumulative
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impact of Degree Days on land values will be biased.13 The exhaustion of this effect is

econometrically tested through a joint-hypothesis F-test, whereby if
∑N

n=0 β0+β1+...βN 6= 0,

the effect is a permanent, as opposed to a transitory one.

Stability

In addition to the baseline and distributed lag model, I investigate the sensitivity of the

temperature-farmland value relationship across time and space through a series of robustness

checks. The intuition of comparing empirical results by stratifying observations on temporal

and geographic divisions, such as years and geographic coordinates, allows the researcher

to investigate if the overall regression results are uniformly experienced or if particular sub-

sets experience different marginal impacts. This is achieved by conducting a Wald test to

determine whether all coefficients for subgroups are jointly the same.

Stability Over Space

To examine the sensitivity of the temperature effect on farmland, I adopt two methods

to spatially separate the study area. The first method divides the sample into two equally

sized, and mutually exclusive regions of East and West or North and South, using the study’s

median latitude and longitude observations to segment the regions. Recall the theoretical

assertion that all things considered, a farmer with a more variable baseline climate, will up-

date their beliefs of climate norms more slowly than a farmer who has a less variable baseline

climate. To reflect this hypothesis, the second division is made by separating counties based

on the coefficient of variation for harmful degree days.

Stability Over Time

The premise that there has been a shift in the farmer’s belief about climate change over

the last thirty years is an empirical foundation that Severen et al.(2016) promote. However,

whereas the authors examine the evolution of climate change beliefs in the cross-section,

I am motivated to examine this relationship with a panel model, and to see if there has

been a structural shift in the farmland market. To that extent, I divide the sample into two
13Following the literature, I choose to determine lag length by sequentially adding lagged weather variables
until the latest addition is no longer statistically significant.
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equally-sized year groups of 1950 - 1978 and 1982 - 2012.

Empirical Results
The main set of regressions in this study utilize the tandem of normal degree days with

upper and lower thresholds of degree days 10−29◦C and harmful degree days as the aggregate

of degree days over 30◦C.

The OLS results of (4) are compared to a pooled OLS model in Table 2. An F-Test con-

firms that (4) performs better than the pooled OLS alternative.14 Regardless of the inclusion

or omission of fixed effects, none of the four weather variables are distinguishably different

from zero.15 Two sets of standard errors are located under each regression coefficient. The

naive standard errors are in parentheses, and have not been corrected for heteroskedasticity

or spatial correlation. In brackets, are multiway clustered errors at the state and year level.

This latter set corrects for heteroskedasticity and spatial correlation. All subsequent models

in this analysis include fixed effects and multiway clustered errors, unless stated else wise.

Stability Across Space

Division into Cardinal Directions

To verify if the effect of these weather fluctuations on changes in farmland value are stable

across space, I first divide my study area into cardinal directions of East, North, South,

and West, and re-estimate the baseline line model. Separation into these four regions was

motivated by the clear trend in temperatures cooling from south to north, and a markedly

distinct pattern in increasing growing precipitation fromWest to East, as evidenced in Figure

3, which illustrate regional differences in exposure to Degree Days > 30◦C and growing season

precipitation.

Table 3 presents the results of the baseline regression when we include an interaction

of a regional dummy with the four weather variables. In Column A, (4) is interacted with

regional dummy East-West, whereas in Column B, our baseline model is interacted with
14Performs better refers to the fact that the pooled OLS estimates will be biased. The F statistic was 6.6985
with p < 2.2e−16.

15Though it is worth noting that with exception to Harmful Degree Days, the signs on the weather coefficients
between these two models, are opposite.
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Table 2: Baseline Regression Results With and Without Fixed Effects

Model
Fixed Effects No Fixed Effects

Degree Days 10− 30◦C −25.92 91.08
(2.94) (2.44)
[37.28] [28.71]

Degree Days > 30◦C −20.86 −382.50
(8.09) (7.87)
[94.10] [99.60]

Precipitation 8.22 −165.15
(4.08) (9.80)
[25.92] [130.45]

Precipitation2 −0.03 0.37
(0.01) (0.03)
[0.08] [0.38]

Observations 30,702 30,702
R2 0.0034 0.0789

Notes: The above table corresponds to a model for panel data of farm-
land values, where N = 2,193 and T = 14 census years (1950-2012).
There are two sets of standard errors reported under the regression co-
efficient. The untreated, naive standard errors are in parentheses. In
brackets are standard errors which have been clustered by state and
year. The left-hand panel represents our baseline model with county and
year fixed effects. The right-hand panel represents our baseline model
when fixed effects are omitted. Statistical significance is reported at
α = 0.1*, α = 0.05**, α = 0.01***, respectively. To interpret coefficients
and standard errors, the reader should divide the entry of interest by
100,000.

regional dummy North-South. As evidenced in Column B, the baseline model results appear

to be sensitive to regional divisions, whereby, while no weather variables are statistically

indistinguishable from zero in Column A, both precipitation terms for the southern region

are highly significant, and with the expected sign in Column B. Additionally, the R2 terms

in both models has significantly increased from the baseline comparison: rising from 0.003

to 0.021 in the North-South regression, and 0.011 in the East-West regression.

A possible explanation as to why the weather coefficients are not jointly different in the

East-West separation could be attributed in part to the comparatively similar temperature

exposures, in comparison to the North-South division. While temperature has often been

attributed as the stronger of the two drivers in climate change, and given that the noticeable

difference in East-West is precipitation, it could be that because there is relatively more

irrigated land in the western half of the sample, hence the two regions experience the same
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Notes: These figures correspond to harmful degree days (Degree Days > 30◦C) and growing season precipitation in the
bottom panes over the growing season April - September, when the panel of farmland data is split into equally sized regions
where N = 549 (North,South) and N=548 (East,West) counties. Note that these are average exposures per year. Counties
that are shaded in grey correspond to missing counties. Counties shade in black correspond to counties that are not in that
particular region.

Figure 3: Degree Days > 30◦C and Growing Season Precipitation Across Cardinal Regions

effect of weather shocks on changes in farmland value. Alternatively, because precipitation

events tend to occur on a smaller spatial scale than are generally measured, there is higher

likelihood that this weather variable is suffering from measurement error.
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Table 3: Baseline Regression Results by Cardinal Direction

A B
East West North South

Degree Days 10− 30◦C −25.43 −43.99 −21.55 −30.91
[37.42] [46.39] [38.91] [38.33]

Degree Days > 30◦C −171.40 −6.80 −145.57 −103.88
[156.84] [115.67] [148.42] [86.74]

Precipitation −19.40 24.06 70.58 −58.68***
[42.42] [30.90] [48.10] [15.78]

Precipitation2 0.000,2 −0.03 −0.20 0.14***
[0.11] [0.10] [0.19] [0.03]

Wald Test of Joint Significance 0.392 0.392 0.001*** 0.001***
(p-value)

Number of Weather Variables 1 1 3 3
Individually Different at p=0.05

Observations 15,351 15,351 15,351 15,351
R2 0.01143 0.01143 0.02084 0.02084

Notes: The above table corresponds to the baseline model when divided into regions of East versus West, and North
versus South. In brackets are standard errors which have been clustered by state and year. The number of weather
variables across regional pairings is reported on the last line. A value of 3 indicates that 3 out of the 4 weather variables
were individually different at the p = 0.05 level. Statistical significance is reported at α = 0.1*, α = 0.05**, α = 0.01***,
respectively. To interpret coefficients and standard errors, the reader should divide the entry of interest by 100,000.

Division into High and Low Climate Variability

This study’s interest in examining if farmers are capitalizing expectations of recent

weather shocks can be dissected even finer: of chief interest is the modeling and under-

standing how this group of stakeholders reacts to harmful degree days. Instead of dividing

the sample into groups based on their geographical location, I separate the study area into

different regions based on the variability of a climate variable: harmful degree days. To model

this climate variability, I elect to calculate the coefficient of variation for the aforementioned

variable, which is the ratio of the standard deviation to the mean. This calculation allows us

to map the yearly fluctuation in harmful degree days, and has a straightforward interpreta-

tion: the higher the coefficient of variation, the larger the yearly fluctuations in the variable

of interest, which translates into a less stable and less predictable climate.

Table 4 presents the result of the baseline regression model when the weather variables

are interacted with a coefficient of variation for harmful degree days dummy. Linear and

quadratic precipitation terms are statistically significant and have the expected sign. How-
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Table 4: Baseline Regression Results by Climate Variability
Climate Variability
High Low

Degree Days 10− 30◦C −14.62 −48.25*
[38.26] [34.36]

Degree Days > 30◦C 17.68 −71.81
[92.56] [90.73]

Precipitation 68.22** −23.70
[36.59] [23.96]

Precipitation2 −0.26** 0.08
[0.13] [0.05]

Wald Test of Joint Significance (p-value) 0.002** 0.002**

Number of Weather Variables 3 3
Individually Different at p=0.05
Observations 15,351 15,351
R2 0.01003 0.01003

Notes: The above table corresponds to the baseline model when divided into re-
gions of high and low climate variability for CV of harmful degree days. In brackets
are standard errors which have been clustered by state and year. Statistical signif-
icance is reported at α = 0.1*, α = 0.05**, α = 0.01***, respectively. To interpret
coefficients and standard errors, the reader should divide the entry of interest by
100,000.

ever, whereas these terms were statistically significant in the Southern region in Table 3,

they are now statistically significant for the less stable. A single weather variable, normal

degree days, is statistically significant in the more stable region. A Wald test rejects the null

hypothesis that the weather coefficients for these two regions are jointly the same, which

provides supporting, though not absolute, evidence that how variable of a climate a farmer

lives in plays a role in their capitalization of weather shocks.

Testing Across Time

Table 5 highlights that no weather variables across time are statistically indistinguishable

from zero. A Wald test for joint significance concludes that these two subsamples of time

are not jointly different from each other, and all pairwise tests of equality fail to reject the

null hypothesis that they are equal.

As a side note: it would be interesting to take this finding and investigate if, when I

introduce climate variables in an alternative model, those results support those of Severen
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Table 5: Baseline Regression Results Across Two Time Periods
Time Period

Early Late
Degree Days 10− 30◦C −27.49 −26.45

[35.88] [36.51]

Degree Days > 30◦C −28.35 −29.79
[88.90] [90.85]

Precipitation −20.88 34.40
[33.87] [45.19]

Precipitation2 0.06 −0.09
[0.13] [0.12]

Wald Test of Joint Significance (p-value) 0.794 0.794

Number of Weather Variables 0 0
Individually Different at p=0.05
Observations 30,702 30,702
R2 0.0076 0.0076

Notes: The above table corresponds to the baseline model when divided two equal
subsets of time. The panel labelled Early is for the panel of data from 1950-1978, while
the right-hand panel, labelled Late epresents census years 1982-2012. In brackets are
standard errors which have been clustered by state and year. Statistical significance is
reported at α = 0.1*, α = 0.05**, α = 0.01*** , respectively. To interpret coefficients
and standard errors, the reader should divide the entry of interest by 100,000.

et al.(2016), who have concluded that since 1987, there has been a structural shift in the

farmland market and farmers are capitalizing their beliefs of climate change.

Distributed Lag Model

Thus far, the narrative of my empirical results reflects weather shocks and changes in

farmland value over current weather for each census year. This implicitly assumes that,

for each respective census year, farmers did not consider past or future weather events to

play any role in their future expectations of farmland value. In the author’s opinion, this

is too strong of an assumption to make, and therefore I conduct a distributed lag model

that includes lags (past) and leads (future) of weather. Ample research has been done

in agricultural economics to show that corn yields are only impacted by current weather

realizations, are not affected by future or past weather events (Hsiang, 2016).

In Figure 4, the left-hand panel highlights the relationship of interest between farmland

values and harmful degree days. I find that neither contemporaneous, future, or past harmful

degree days are indistinguishably different from zero. In contrast, the right-hand panel

illustrates that only contemporaneous harmful degree days affects the variance in corn yields.
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This is a solid falsification test, and reassures us that the weather variables being used are

of good quality. Table 6 shows the evolution of the baseline model’s weather variables over

different lags and leads.

To identify if these weather shocks have a permanent or transitory effect on farmland

values, I conduct an F-Test that the cumulative effect of each weather variable’s lagged terms

are jointly equal to zero. With an F-stat of 0.5543 and a corresponding p-value of 0.6959, I

fail to reject the null hypothesis that these weather shocks have a temporary effect on the

farmland market, and confirm that it is not a permanent one.

Farmland Corn

Notes: These figures correspond to the marginal effects of harmful degree days, Degree Days 30◦C for natural log of farmland
value (left) and natural log of corn yields (right). While only contemporaneous harmful degree days explains variations in corn
yields, we cannot detect any explanatory power for periods of harmful degree days in terms of explaining variation in
farmland value. To interpret these standard errors, the readers should divide the value by 100,000.

Figure 4: Marginal Effects of Lags and Leads For Two Dependent Variables

Robustness Checks

The findings thus far have all been based on the usage of one set of temperature variables

- Degree Days 10 − 30◦C and Degree Days > 30◦C - and one growing season, April to

September. As a final series of robustness checks, I test the sensitivity of my findings by:

1)Using an alternative set of temperature variables, Degree Days 8− 32◦C and
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Table 6: Baseline Regression Results Across Two Time Periods

Lag Year

-2 -1 0 1 2

Degree Days 10− 30◦C −24.73 −24.72 −25.92 −25.67 −24.37
[35.88] [35.65] [37.28] [30.31] [27.65]

Degree Days > 30◦C −5.11 −1.60 −20.86 −20.89 −53.56
[101.76] [101.99] [94.10] [83.13] [80.54]

Precipitation 9.23 9.35 8.22 8.06 8.72
[22.57] [24.03] [25.92] [25.55] [24.37]

Precipitation2 −0.03 −0.03 −0.03 −0.03 −0.03
[0.07] [0.07] [0.08] [0.07] [0.10]

Degree Days 10− 30◦C lag1 −3.78 4.64
[28.66] [21.49]

Degree Days 10− 30◦C lag2 22.48
[24.44]

Degree Days > 30◦C lag1 −81.03 −83.16
[76.11] [77.83]

Degree Days > 30◦C lag2 −14.65
[54.23]

Precipitation lag1 −33.43 −35.07
[24.09] [23.73]

Precipitation lag2 −16.62
[27.69]

Precipitation2 lag1 0.03 0.03
[0.06] [0.06]

Precipitation2 lag2 0.03
[0.08]

Degree Days 10− 30◦C lead1 0.51 −19.47
[19.68] [26.62]

Degree Days > 30◦C lead1 5.10 −50.22
[80.67] []

Precipitation lead1 5.47 −3.09
[25.48] [22.00]

Precipitation2 lead1 −0.01 0.01
[0.07] [0.14]

Degree Days 10− 30◦C lead2 43.81*
[25.49]

Degree Days > 30◦C lead2 130.96*
[73.44]

Precipitation lead2 −5.03
[18.54]

Precipitation2 lead2 0.09
[0.08]

Observations 30,701 30,701 30,702 30,701 30,701
R2 0.0213 0.0165 0.0034 0.0038 0.0239

Notes: The above table corresponds to regression results for farmland value from 1950-2012 with different lag(past)
and leads(future) of weather variables.The left-most column, with a lag of -2, stands for weather two years prior the
agricultural census. Whereas the column with lag 0 represents contemporaneous weather. Note that the right-most
column has a lag of 2, indicating weather two years after each census. Standard errors are reported below coefficients,
in brackets, and are clustered by state and year. Statistical significance is reported at α = 0.1*, α = 0.05**, α = 0.01***

, respectively. To interpret coefficients and standard errors, the reader should divide the entry of interest by 100,000.
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Degree Days >32◦C , but do not change the growing season and 2) Using an alternative start

and end of the growing season of March to August, with Degree Days10− 30◦C and Degree

Days > 30◦C.16

The inability to distinguish any of the four weather variables from zero in our baseline

model is stable when the sample is split into sub groupings of study years for alternative

growing seasons and weather variables. That we find less stability across space across these

alternatives, is not that surprising and exemplifies that spatial heterogeneity is a very potent

presence in farmland value and weather observations. Results from the placebo test con-

ducted in the distributed lag model confirms that recent weather shocks have had a transient

impact on changes in farmland values, as opposed to a permanent one.

Conclusion
With the growing likelihood that accumulating greenhouse gases will change the impact

climate, there has been growing interest in also measuring the impact of climate change on

agriculture. Currently, agriculture is arguably one of the most researched sectors in the cli-

mate change impacts literature. In this study I combine elements of the Ricardian approach

and panel approach to analyze the effects of weather shocks on the farmland market. More-

over, because these yearly fluctuations in weather are essentially random and independent

of other unobserved determinants of agricultural outcomes, these panel estimates correct for

omitted variable bias.

The overarching goal of this paper has been to conceptualize, explore, and calculate if

recent weather shocks have been capitalized by farmers, in the form of changes in farmland

value. This was accomplished in three stages. Specifically, I examined if the impacts of

of weathers shocks on farmland value is stable across time and space sub groupings. I also

divided the sample into regions that are identified as having more and less stable climates, and
16The correlation coefficient between the Degree Days10−30◦C and Degree Days8−32◦C is 0.981, while the
correlation coefficient between harmful degree day alternatives of Degree Days > 30◦C and Degree Days
> 32◦C is 0.978, confirming that interchanging the pair of degree day terms will pick up the same signal
in changes of farmland value. Similarly, when we change the seasons, the correlation coefficient for Degree
Days > 30◦C between the two seasons is 0.962, while the correlation coefficient for Degree Days 10− 30◦C
is 0.996. The correlation coefficient for growing season precipitation is 0.913.
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examined if the farmer with a less stable climate is more likely to capitalize an idiosyncratic

weather shock. And lastly, I examine if farmers are forward looking or myopic through a

distributed lag model.

This body of research is an extension of the increasingly popular method to frame farmers

as forward thinking and not myopic. In contrast to focusing on survey data that represents an

amalgam of public opinion and agricultural surveys, I restrict data observations to the stake-

holder of interest, the farmers, and base identification upon how farmland values changes

with weather realizations.

That I was unable to distinguishably conclude that any of my weather parameters were

different from zero prompted a further exploration across regional and temporal subsets,

upon which I conclude that while my findings are robust across time, they are notably

sensitive when divided by geographical location. One alternative explanation to why we

may not have found temporal differences in the effects of weather shocks is the fact that

farmers within each state have adapted to climate change at different rates. So while it is

likely that individually, states have different tolerances of weather shocks, across the two

designated sub periods, it was relatively equal.

The decision to measure if weather shocks have the same effect on changes in farmland

values, when farmers are split into regions of more and less climate stability, pairs nicely with

our theoretical model. Such a division into more and less stable climates allows us to test the

hypothesis that all else equal, the updating of a farmer’s prior beliefs of the mean weather

will be driven by the variability of weather (variance in weather realizations). However,

caution should be taken when interpreting these results. Though I find stable results across

alternative growing seasons and harmful degree day cut offs, that I do not acknowledge that

these regions have uniquely different temperature thresholds is an important one. I cannot

rule out that degree days are an overly restrictive functional form for this model. As such,

future research would benefit by modeling the temperature effect on changes in land value

in a more flexible form and utilize the entire distribution of weather, avoiding the issue of
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assigning temperatures as harmful and beneficial.

Perhaps the most promising piece of empirical results coming out of this study are the

fact that I found convincing evidence that neither past, present, or future weather weather

shocks are being capitalized by farmers in the farmland market. As a check, I find evidence

supporting the intuition and previous research that corn yields are only impacted by current

weather and not future or past weather, as is evidenced in Figure 4. Such a check helps

reduce, though does not cancel out, the probability that the empirical results are spurious.

There are a number of important caveats which my analysis has not yet incorporated and

warrant addressing. Firstly, the issue of utilizing fixed effects. A powerful advantage of time

and location fixed effects includes the ability to capture all time-invariant and time-varying

confounding factors, respectfully. However, by including both year and fixed effects, a large

amount of variation is also captured and hence amplifies measurement error. As such, further

research should explore the usage of alternative panel methods, such as the usage of a spatial

lag model. A second caveat relates to the issue of government payments. As aforementioned

in the Introduction, it is unclear if farmers undertake costly adaptation strategies to cope

with a changing climate, when there is a history of the governmental agriculture support

programs protecting farmers against substantial losses.
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