

Modernizing Person-Level Entity Resolution with Biometrically Linked Records

Matthew Gross

Michael Mueller-Smith

Twitter

University of Michigan

March 21, 2022

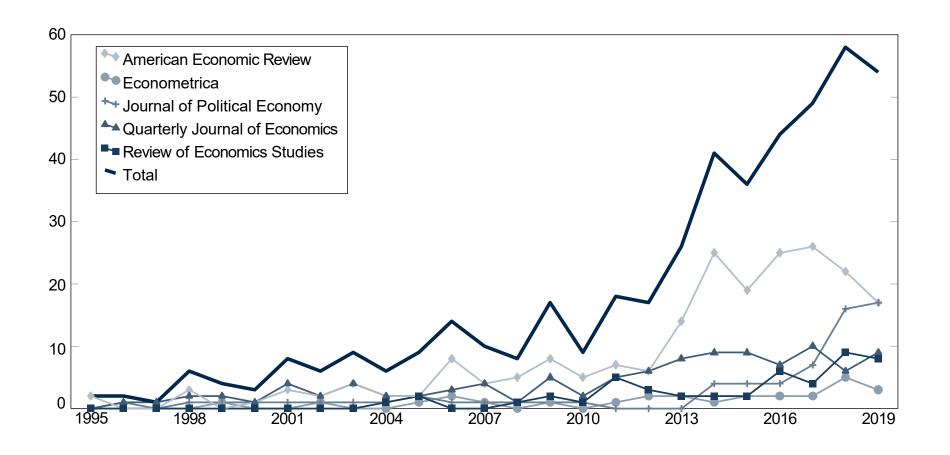
Mueller-Smith (Univ. of Michigan)

Entity Resolution

Motivation

- Research increasingly relies on "big data" and administrative records
 - Data linkage is an empirical necessity
- Frequently do not have access to unique linking identifiers
 - Rise of fuzzy or probabilistic matching techniques
 - Often limited discussion of matching strategies in research
- Implications of imperfect linkage in causal inference can be problematic
 - Introduces (potentially non-trivial) measurement error into analysis

Rise of Administrative Data in Economics Research



- Increase in papers published in "top 5" economic journals that mention the term "administrative data"
- Total number of papers increases by a factor of 5 between 2010 and 2019

Overview of Project

In this paper, we:

- Utilize a large, novel training set to develop a highly non-linear model to match individuals based on name and date of birth
 - Compare a range of commonly used classifiers to determine which performs best
 - Compare the performance to models trained with smaller and hand-coded training sets
- Evaluate the algorithm's out-of-sample performance using data from other contexts to determine external validity and suitability to both record linkage and deduplication applications
- Simulation exercise to show how match performance statistics relate directly to estimation bias and statistical precision

Note: Baseline algorithm developed in this paper is used by CJARS to link individuals across criminal justice databases

Defining Algorithm Performance Statistics

Algorithm Match Algorithm Nonmatch

True Match	True Nonmatch
True Positive (TP)	False Positive (FP)
False Negative (FN)	True Negative (TN)

Precision = % of algorithm matches that are "correct" = $(\frac{TP}{TP+FP})$

Recall = % of the true matches correctly identified by the algorithm = $\left(\frac{TP}{TP+FN}\right)$

FI Score = measure of overall performance = $2 \times \frac{Precision \times Recall}{Precision + Recall}$

Main Takeaways

- Develop a random forest model which outperforms other standard prediction algorithms
 - Models trained with large training sets up to 250,000-500,000 observations exhibit increased stability and higher performance
 - Model trained with biometric ID linked pairs outperforms hand coded training sets
 - greatly improves recall at modest-to-no cost to precision
 - Gains vary by demographic subgroups, suggesting that method of producing training data is particularly important when working with a heterogeneous sample
- Performance of algorithm remains high in different contexts suggesting that the model may be applicable to non-criminal justice settings
- Simulation demonstrates how the match performance measures of precision and recall are directly related to internal and external validity
 - Depending on the setting, errors in match recall and precision lead to biased estimators and incorrect confidence intervals

Defining The Matching Problem

Given two sets $\bf A$ and $\bf B$ containing elements a and b:

 A record linkage algorithm seeks to identify which elements of A and B are common to both sets.

$$M = \{(a, b); a = b, a \in A, b \in B\}$$

- A, B must include a vector of common variables
 - **The second of the second of**

The Motivating Matching Problem

This research arises out of the production needs of the Criminal Justice Administrative Records System (CJARS):

- Collect individual-level data from criminal justice organizations
- Identify the same individual across time and jurisdiction
- Lack unique identifiers, but have name and date of birth
- Build a matching model to predict matches across data sets

Novel Training Data From Criminal Justice Sources

Our matching model is created using two sources of training data containing biometric (fingerprint) IDs and original (flawed) PII:

- Harris County District Clerk (Houston)
 - Criminal defendant booking data for cases between 1980 and 2017
 - 1,722,575 unique combinations of name and date of birth (1,317,063 unique IDs)
- Texas Department of Criminal Justice
 - State prison inmates between 1978 and 2014
 - 1,042,450 unique combinations of name and date of birth (905,528 unique IDs)
- Fingerprint ID is a source for knowing true match (TM) status for millions of records

Redefining the Match Problem as Deduplication

- Approximately 2.8 million unique PII combinations between the two sources
 - No crosswalk linking the IDs across datasets
 - Two disjoint sets when identifying possible matches
- Predict the match status of pairs of observations within each data set
- Known as data deduplication
 - Note that any deduplication can be restated as a record linkage problem
 - Instead of matching set A to set B, we simply are matching set A to set A eliminating pairwise exact matches

Blocking Strategy To Limit the Match Space

Cannot compare every possible training match since (approximately 2 trillion pairs; 670k TM).

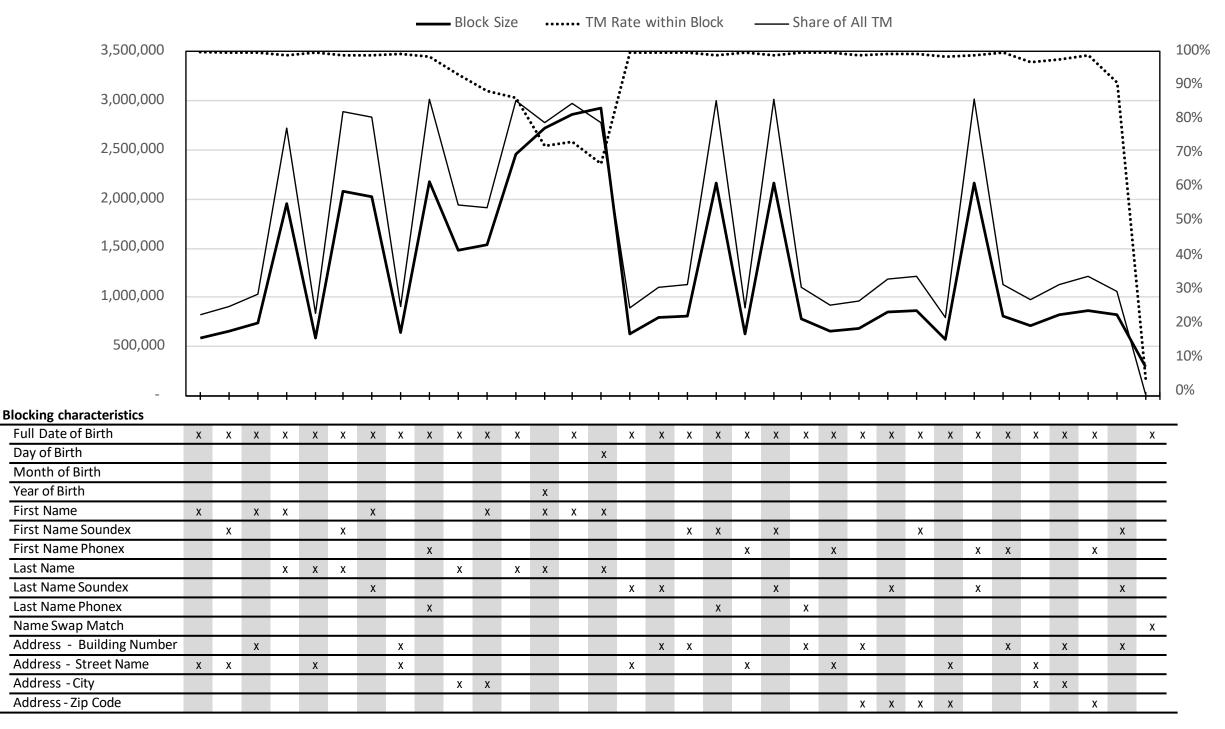
Limit the potential match space using a blocking strategy:

- Pairs are only evaluated for TM status if they meet a deterministic criteria:
 - **■** Exact match on date of birth + last name soundex
- Union of 10 overlapping blocks
- 2 trillion → 17.5 million pairs
 - > 95% of the 670 thousand true matches
- Currently working to leverage learning disjunctive normal form (DNF) blocking
 - ▼ Very cool/efficient! Limited set of results on this at the moment

Overlapping Blocks Identify Most True Matches

Block	Fraction of True Matches	True Matches Not Included
Date of birth + last soundex	77.9	147,654
Date of birth + first soundex	81.5	123,808
Month of birth + first soundex + last soundex	72.7	182,324
Day of birth + First soundex + last soundex	72.1	186,694
Year of birth + first soundex + last soundex	72.1	186,798
Date of birth + last phonex	77.9	147,761
Date of birth + first phonex	82.1	119,861
Month of birth + first phonex + last phonex	73.2	179,241
Day of birth + First phonex + last phonex	72.5	183,624
Year of birth + first phonex + last phonex	72.5	183,720
Union of Blocks	95.2	32,211

Learning disjunctive normal form (DNF) blocking



Building and Testing a Model

- Starting with the blocked pairs, we take a 1 million observation random sample to use as a training data set
 - ▼ Represents a substantial increase over standard training sample sizes
- Large training data allows us to estimate complicated non-linear model with many features
 - We define 46 matching variables, based on name components and date of birth, to determine similarity of records
 - Include name standardization variables to account for common nicknames
- Test performance of the model using reserved data not included in the training sample
- Estimate different models using the same training sample and compare performance using the same reserved sample
 - Allows for a clean comparison across models

Comparing Different Classification Models

We are agnostic about the choice of model and compare across a wide range of options

- Simple deterministic for exact matches
- Machine learning SVM, Random Forrest, Neural Networks
- Naive bayes classifiers
- Regression based LASSO

In all models, we train on the same 1,000,000 observation sample of pairs and test out of sample performance on the remaining pairs

Performance of Different Models

Model	Precision (% of matches are correct)	Recall (% of correct matches made)	F-Statistic
Deterministic	0.93	0.76	0.84
Naive Bayes Classifier (Discrete)	0.90	0.72	0.80
Naive Bayes Classifier (Kernel)	0.88	0.81	0.84
Support Vector Machine	0.94	0.83	0.88
Lasso Shrinkage Model	0.90	0.82	0.86
Random Forest	0.93	0.88	0.90
Random Forest (Demog. Enhanced)	0.93	0.89	0.91
Neural Net Perceptron	0.93	0.85	0.89
Neural Net	0.92	0.88	0.90

- Demographic enhanced random forest model achieves the highest out of sample performance
- Substantial improvement to recall with minimal cost to precision
- Fast to estimate!

Adjusting the Size of Training Data

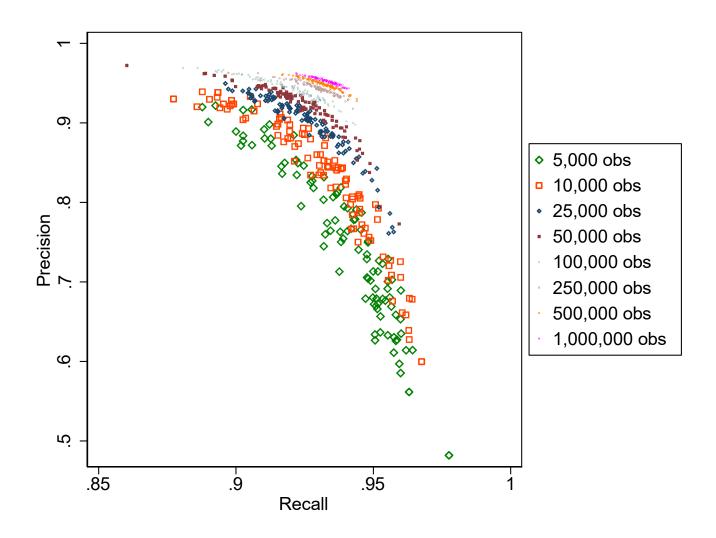
Significant improvement over prior matching algorithms... why?

- Machine learning technique?
- Training sample size?
- Hand-coding or biometric trained model?

To evaluate the role of sample size:

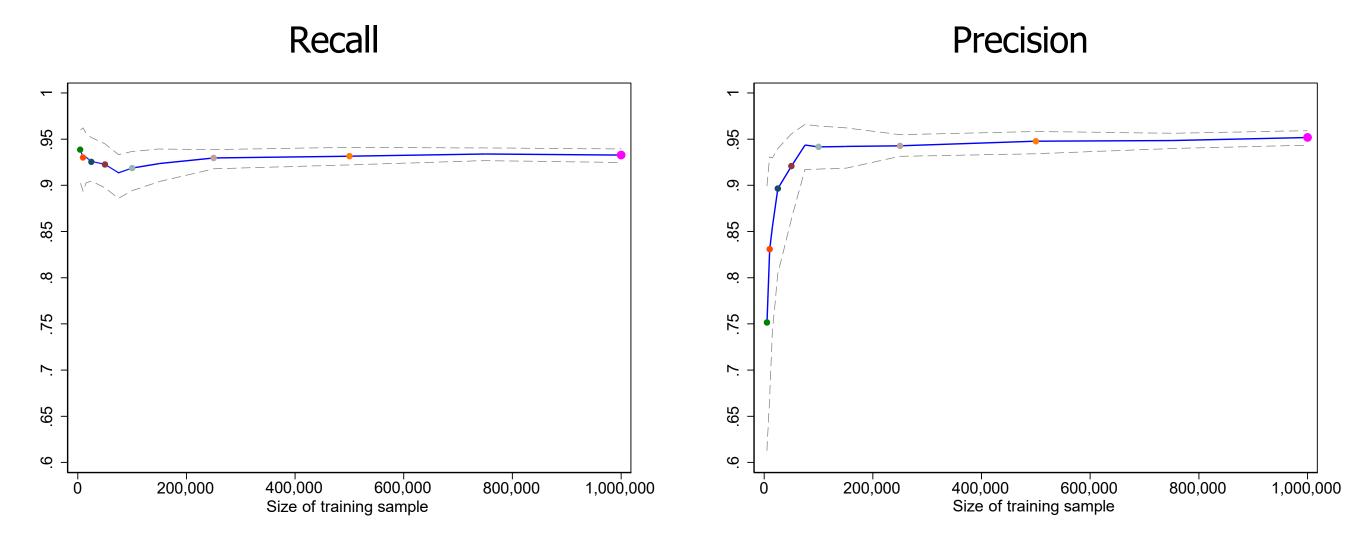
- Estimate series of bootstrapped models off using a range of 5,000-1,000,000 training observations
 - 100 times per candidate training sample size to measure performance stability
- \bullet Shows that recall does not stabilize until \sim 250,000 training observations

Comparing Performance By Training Set Size



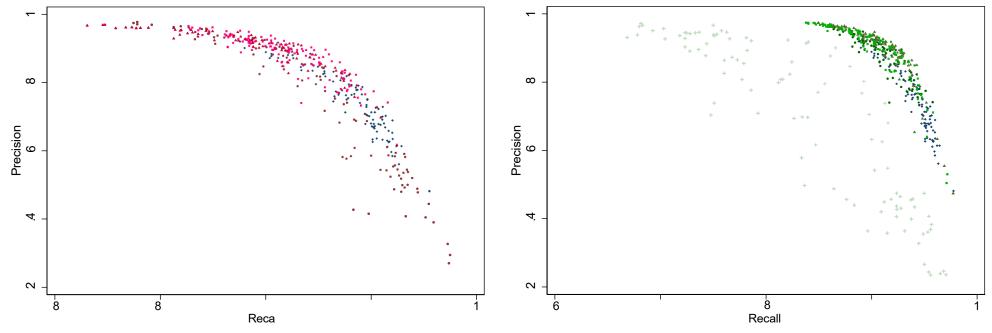
- As the training set grows, the trade off between precision and recall decreases
- Variation between independent models from the same sample size shrinks

Comparing Performance By Training Set Size



- Solid blue line is the average performance at each training set size
- Dashed lines represent the 5th/95th percentile performance

Comparing Performance By Training Set Composition



(a) Excluding low, high, and marginal matches in training sample

(b) Adjusting marginal share in training sample

		Low Predicted Match	Marginal Predicted	High Predicted Match	Average	Std. Dev.	Average	Std. Dev
	Symbol	Likelihood	Match Likelihood	Likelihood	Precision	Precision	Recall	Recall
Baseline (5,000 obs.)	•	96%	1%	3%	0.75	0.10	0.94	0.02
Panel A: Excluding low,	, high, and	marginal matches in trai	ning sample					
Scenario A1		0%	50%	50%	0.73	0.20	0.93	0.04
Scenario A2		50%	50%	0%	0.90	0.06	0.90	0.03
Scenario A3		50%	0%	50%	0.88	0.06	0.91	0.06
Panel B: Adjusting mar	ginal share	in training sample						
Scenario B1	•	50%	0%	50%	0.88	0.06	0.91	0.06
Scenario B2		33%	33%	33%	0.90	0.08	0.90	0.03
Scenario B3		25%	50%	25%	0.89	0.09	0.90	0.03
Scenario B4	_	0%	100%	0%	0.69	0.24	0.83	0.09
Full Blocked Pair Comp	parison Sam	ple Statistics						
Percent True Matches		1%	51%	89%				
Total True Matches		93,943	103,557	429,048				
Total Blocked Pairs		16,889,570	204,344	483,601				

Adjusting the Method of Generating Training Data

Another difference between our approach and prior work is the method of defining TM in training data:

- Typically training sample is hand-coded
 - Raises issues of human bias or lack of familiarity with target linking population
 - Costly to produce large samples
- Estimate the preferred random forest model on hand-coded data to see how performance changes
 - ▼ 5,000 pair sample from blocked pairs and assigning 3 RAs to label match status of each pair
 - Method is similar to what is reported in the literature
- Especially interested in possible heterogeneous performance across demographic groups

Precision Performance by Training Data

Precision = $\left(\frac{TP}{TP+FP}\right)$ = percent of matches that are "correct"

		Demographic Enhanced Random Forest					
		5,000 Hand-Coded 5,000 Biometric 1,000,000 Biometric					
	Deterministic	Training Obs.	Training Obs.				
Precision by Race/Ethnicity							
Overall	0.93	0.95	0.91	0.93			
White	0.96	0.97	0.94	0.94			
Black	0.97	0.97	0.96	0.95			
Hispanic	0.88	0.98	0.95	0.93			

 Deterministic and model trained by hand-coded data have slightly higher precision across race/ethnicity

Mueller-Smith (Univ. of Michigan)

Recall Performance by Training Data

Recall = $(\frac{TP}{TP+FN})$ = percent of the true matches made

		Demographic Enhanced Random Forest					
		5,000 Hand-Coded 5,000 Biometric 1,000,000 Biometric					
	Deterministic	Training Obs. Training Obs. Training		Training Obs.			
Recall by Race/Ethnicity							
Overall	0.76	0.77	0.84	0.89			
White	0.81	0.81	0.89	0.93			
Black	0.80	0.81	0.86	0.91			
Hispanic	0.73	0.74	0.88	0.93			

■ Biometric ID → substantial gains in Recall

Overall Performance by Training Data

F statistic =
$$2 \times \frac{Precision \times Recall}{Precision + Recall}$$

		Demographic Enhanced Random Forest					
		5,000 Hand-Coded 5,000 Biometric 1,000,000 Biometric					
	Deterministic	Training Obs. Training Obs. Training O					
F-Statistics by Race/Ethnicity							
Overall	0.84	0.85	0.87	0.91			
White	0.88	0.88	0.91	0.94			
Black	0.88	0.89	0.90	0.93			
Hispanic	0.84	0.84	0.92	0.93			

- The large, biometric ID training data performs the best
- Large gains in recall make up for small declines in precision

Takeaways

- Large, biometric ID training data yields highest performing model
- Smaller biometric ID training set outperforms hand-coded training set
 - Higher recall at only slight cost to precision
 - RAs are too conservative about matching and overweight name similarity vs. DOB similarity
- Heterogeneous performance by race (and other demographic groups)
 - Major implications for research on diverse populations with heterogeneous TE

Out of Sample Exercises

We run 3 exercises to test the algorithm's out of sample performance - each exercise is progressively more different than the training sample

- Non-Texas Prison population (333 thousand inmates)
 - Identify individuals in prison on July 1, 2017, and match across states to check for false positives
- Washington voter records
 - **▼** Conduct a one-to-one match between 2008 and 2012 presidential voting records
 - Higher rate of females in this data will likely lead to performance declines due to higher probability of name changes
- Social Security Master Death File (DMF) for 2000-2009 deaths
 - Start with 20.2 million deaths and generate 4 million corrupted records
 - ▼ PII is corrupted to include standard spelling, OCR and keyboard errors
 - Increasing density of PII space will make it harder to differentiate TM from TN

Out of Sample Exercise Results

Application	Accuracy	Precision	Recall	F-Stat.	False Pos. Rate
Multi-State Inmate Snapshot (July 1, 2017)	1.00	_	_	_	0.000
Washington State Voter Records (2008 & 2012)	0.98	0.92	0.88	0.90	0.008
Corrupted Death Master File (2000-2009)	0.98	0.97	0.93	0.95	0.003

- Out of 463,969 inmate blocked pairs, the algorithm makes 2001 matches (0.4% false positive rate within blocks)
- Despite the higher proportion of females in the WA data, the algorithm recall is still 88%
- The algorithm is able to match 93% of the corrupted DMF records back to the original file while avoiding almost all false positives

The Importance of Match Performance in Economic Research

Poor recall and precision can impact the estimation of treatment effects

- Matching scenario where match is the dependent value of interest
 - Common example is criminal recidivism as an outcome variable matching strategy to determine if individual appears in future arrest data (Tahamont et al, 2019)
- Scenario where the analysis sample is conditioned on being matched
 - For example, studying healthcare utilization among those with Medicaid

Determine how different precision and recall errors affect estimated treatment

Scenario 1

For scenario 1, the outcome variable is generated by the following equation:

$$y_i = {}_{1} (\beta d_i + E_i > F^{-1}(\mu))$$

where d_i indicates whether person i received a treatment, and μ determines the baseline outcome rate for the non-treated population

- To the econometrician, the outcome variable is 1 if a treated observation is matched to an external data set (such as arrest, hospital admission, etc)
- Errors in recall lead to fewer "correct" matches made
- Errors in precision lead to more "incorrect" matches made

The econometrician wants to estimate the simple linear probability model:

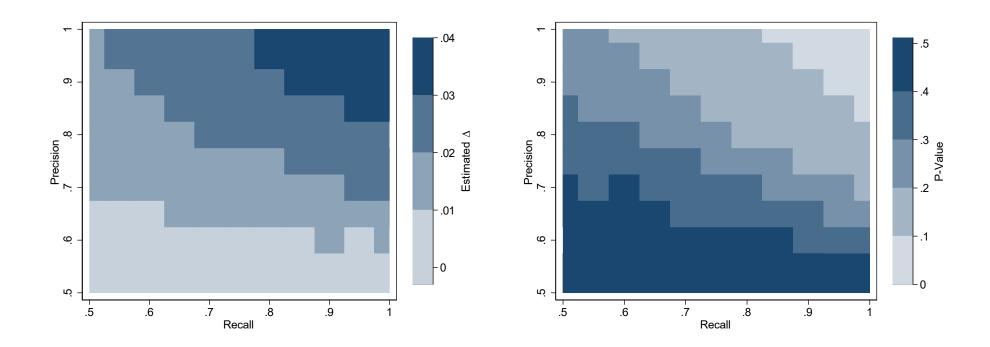
$$y_i = \Delta d_i + \vee_i$$

Example of simulation exercise in scenario 1

- Sample size of 5,000
- 50% of the sample receives the treatment
- Baseline rate of outcome is 50%
- \bullet β is 10% (or \sim 4.5 percentage point treatment in linear model)

We estimate the treatment effect in the presence of both recall and precision errors

Example of simulation exercise



- Left panel shows estimated treatment effect at different combinations of precision and recall
 - **▼** True effect is 0.045, in the top right corner
 - Errors in precision and recall both lead to attenuation bias
- Right panel shows p values of the hypothesis test that the treatment effect is 0
 - Changes to precision and recall lead us to incorrectly fail to reject the null hypothesis

Main Takeaways

- Large training sets (≥ 250,000 obs.) yield better and more stable results when estimating matching models
- Fair degree of heterogeneity across different matching algorithms conditional on training data
- Training data produced by clerical review may be weighted towards precision at the expense of recall
 - Training data with biometric IDs has better overall performance
 - Performance varies by demographic subgroup
- Errors in precision and recall may lead to biased treatment effect estimates and statistical imprecision
 - Especially concerning given prior result on failures of traditional matching approaches for women and minority communities

Thank You For Your Comments

Mike Mueller-Smith - mgms@umich.edu

Illustration of Matching Algorithm Sequence of Events

