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Linkage Error 

For any pair of records (a, b) from file A and file B, record linkage 
(RL) returns a binary decision: 

match, 

non-match. 

Potential errors: 

False matches (mismatches, mismatch error), 

False non-matches (missed matches). 

Focus in this project will be on mismatch error. 

Missed matches are not less important, but require a rather 
different treatment. 
We hope to work on this towards the end of the project period. 
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Common sources of linkage error 

Lack of unique identifiers 

Errors or formatting variations in quasi-identifiers or blocking 
variables 

Computational bottleneck (it may not be feasible to check all 
pairs (a, b) for matches) 

Which records belong to the same individual? 

f.name m.name l.name m.o.b lives in 
Emanuel Hyatt Bendavid Mar New York, NY 
Emmanuel Ben David Dec Washington, DC 
Emanuel NA Ben-Dawid Nov Stanford, CA 
Emanuel NA Ben-David Mar Ashland, OR 
E. NA Ben-Davit Nov San Diego, CA 
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Primary vs. Secondary Analysis 

Primary Analysis: 

– Access to individual files A and B. 

– Record linkage and subsequent data analysis can be performed 
jointly, with propagation of uncertainty. 

Secondary Analysis: 

– Access only to the linked file, not the individual files 

– Information about underlying RL may be available, but limited 
(e.g., blocking variables used, pair-wise match probabilities, etc.) 

The focus in this project is on the more challenging secondary 
setting. 
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Consequences of ignoring mismatch error 

Well-documented for Linear Regression (Neter al., 1965; Scheuren & 

Winkler, 1997; Lahiri & Larsen, 2001) 
w/o mismatches w/ mismatches 
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w/o w/ 
intercept 0.63 1.84 
slope 0.76 0.19 
residual variance 0.38 0.78 
R2 0.52 0.03 

Compactly summarized in our recent survey (Wang et al. , WIREs 

Computational Statistics, 2021+) . 
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Consequences of ignoring mismatch error 

Summary of consequences for Linear Regression: 

– attenuation bias for regression coefficients β∗ = (β1 
∗ , . . . , β∗); inp 

general, squared bias proportional to 

kβ ∗ k22 × mismatch rate 

– inflated standard errors 

– Impact more dramatic for “high signal-to-noise” situations with 
kβ∗k22/σ2 large ∗ 

– for “noisy” models and small mismatch rate, mismatch error may 
be negligible 
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Consequences of ignoring mismatch error 

Beyond the standard linear model, consequences of mismatch error 
are less well-studied. 

Of interest in our project: 

semiparametric models and penalized estimation methods 
(e.g., lasso), 

unsupervised learning methods (e.g., PCA and clustering). 
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Mitigation strategies for mismatch error in linear regression 

I. The Lahiri–Larsen–Chambers method (Lahiri & Larsen, 2001; 

Chambers, 2006; Han & Lahiri, 2019) 

∗The model in these works assumes that instead of true response y 
∗ we observe response y = Π∗ y , where Π∗ is a (generalized) 

permutation matrix. 

Basic idea similar in spirit to instrumental variables: 

Mismatch error yields additional error that depends on 
covariates x, i.e., regression error no longer uncorrelated w/ x. 

; regression on “instrumental variables” q = Qx, where 
Q = E[Π∗]. 
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Mitigation strategies for mismatch error in linear regression 

Pros & Cons of the L-L-C approach: 

+ Conceptual simplicity 

+ Generalizability beyond the classic linear model via estimating 
equations (Chambers, 2009; Chambers & DaSilva, 2020) 

+ Performs well empirically for ”reasonably informative” 
distributions over the range of Π∗ and correctly specified Q, 
even for high mismatch rates. 

− Not conditionally unbiased (for fixed Π∗ , bias is unbounded in 
general), 

− Not robust to misspecifications of Q 

− Not (fully) clear how to calculate standard errors 
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Mitigation strategies for mismatch error in linear regression 

II. Modern robust regression methods (S. & Ben-David, 2019; Wang et al., 

2021+) 

+ Explicit bounds on the estimation error 

+ No information about RL required 

+ Extends to linkage of more than two files 

− Requires small mismatch rate and somewhat high 
signal-to-noise ratio 

− Requires hyper-parameter tuning 

− Not clear how to calculate standard errors / perform inference 
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Mitigation strategies for mismatch error in linear regression 

III. Missing data approach (Wu, 1998; Gutman et al., 2012; Wang et al., 

2021+) 

Unknown (generalized) permutation Π∗ as missing data  

Inference via the EM algorithm or data augmentation 
(; MCMC sampling) 

+ Inference about Π∗ (in addition to parameters) 

− Computational challenge: need to perform sampling over a 
huge set (all permutations) 

− Danger of overfitting (Wang et al., 2021+) 
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Mitigation strategies for mismatch error in linear regression 

IV. Pseudo-likelihood methods (Hof & Zwindermann, 2015; S. et al., 2021) 

Basic model: 

Latent indicator variables {zij } indicating match of xj and yi 

Models for 

(yi, xj )|zij = 1, (correct match), 

(yi, xj )|zij = 0 (mismatch). 

Model for P(zij = 1|xj , yi, . . .) = 1 

; mixture likelihood for each pair 
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Mitigation strategies for mismatch error in linear regression 

Pros & Cons of the pseudo-likelihood approach: 

+ Rather flexible model 

+ Information about RL can be incorporated, but not required 

+ Promising empirical performance 

+ Valid inference (standard errors etc.) via asymptotic theory 

− Computational challenge I: 
non-concavity of the pseudo-likelihood ; dependence on 
starting values, chance of getting stuck in bad local optima 

− Computational challenge II: 
intractable pseudo-likelihood for more complex models (such 
as linear mixed models). 
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Mitigation strategies for mismatch error in linear regression 

Performance of mitigation methods can vary depending on various 
data-specific characteristics. 

synthetic, low SNR synthetic, high SNR CPS HSB 
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Estimation errors over 104 Monte-Carlo/Bootstrap runs of different adjustment 

methods for synthetic data under the exchangeable linkage model (Chambers, 

2009) and semi-synthetic data based on the current population survey (CPS) 

and educational testing data (HSB, High School & Beyond Study). 
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Research agenda (other than theory & methods) 

Development of a suite of benchmark problems from 
real-world linkage problems, to guide model development & 
validation 

Make those available in suitable form in online repositories 

Disseminate research findings to various stakeholders involved 
with the analysis of linked data 

Training of undergraduate & graduate students in data 
science fields 
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Thanks for your time & attention ! 
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