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Introduction 
 
Contemporary curricular structures in American post-secondary education have remained 

relatively stable since their emergence at liberal arts colleges in the early 20th century (Wells, 2016). At 
most institutions, a student develops depth of study by devoting approximately one third of courses to 
curricular experiences in a major, devotes and approximately one third of courses to breadth of study 
through general education programs with the remaining courses devoted to electives (Brint et al., 2009; 
Lattuca and Stark, 2009, Wells, 2016). However, this division of the curriculum has emerged through 
historical processes rather than as the result of empirical research (Bok, 2006). Indeed, concerns have 
been raised about some of these curricular structures for nearly 50 years, with the Carnegie Foundation 
for the Advancement of Teaching calling general education “a disaster area” in 1977. However, 76% of 
institutions affiliated with the American Association of Colleges and University continue to rely, in part, 
on these same structures to ensure breadth of study (Hart Research Associates, 2016). 

As states and institutions look to make more equitable institutions, it is natural that they consider 
whether the contemporary division of coursework motivated by ideas of breadth and depth of study 
continue to serve students and society well in the 21st century. We might wonder, for instance, whether 
working parents attending college should be required to pursue a similar curricular program inspired by 
liberal art students of the 1920s and 30s. For instance, both Texas (Undergraduate Education Advisory 
Committee, 2011) and Missouri (Gwaltney, 2020) have considered reducing the share of the curriculum 
devoted to general education and breadth of study in public institutions. This impulse to decrease 
requirements for breadth of study typically comes from concerns that additional requirements are making 
degree programs more difficult to complete in a timely fashion and thereby raise time to degree or detract 
from students developing specialization in a single field and depth of study. Arguments can be made, 
however, for both increasing and decreasing requirements for breadth and depth of study; ultimately, 
determining the optimal balance of breadth and depth will depend on research assessing the effect of 
increasing and decreasing breadth/depth on desired outcomes. Unfortunately, this necessary research is 
stymied by a failure to adequately measure depth and breadth of study.  

In this exploratory paper, I develop measures of depth and breadth of study that rely on notions of 
course similarity. On this account, a student that enrolls in many highly similar courses is developing 
depth of study while a student that enrolls in many dissimilar courses is developing breadth of study. To 
do this, I draw on two approaches to learning neural embeddings of courses from natural language 
processing and learning analytics and present evidence that these embeddings capture intuitive notions of 
course similarity and content. In the first approach, I use the doc2vec algorithm from natural language 
processing (Le and Mikolav, 2014) to learn neural embeddings of course descriptions that capture the 
semantic similarity of courses. In the second approach I use the course2vec algorithm from learning 
analytics (Jiang and Pardos, 2020; Pardos et al., 2019; 2020; Pardos and Nam, 2020) to learn neural 
embeddings of courses from the structure of student transcripts. This second approach captures the 
structural similarity of courses. Using these learned neural embeddings of courses, I calculate the 
similarity of all pairs of courses students enroll in and aggregate these into measures of student level 
course-taking depth/breadth. Finally, I explore the relationships these measures have with salient social 
identities and fields of study. While exploratory, these initial results suggest that variation in breadth and 
depth of study is as strongly with students from some social backgrounds as it is with some fields of 
study. This exploratory work lays the foundation for future research into the mechanism through which 
students with various social identities navigate the postsecondary curriculum and provides quantitative 
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measures of breadth and depth of study that can be used to test relationships between the constructs 
motivating substantial portions of the American postsecondary curriculum and the desired outcomes of a 
postsecondary education.  
 

Conceptualizing Breadth and Depth of Study 
 
 Traditionally, research has conceptualized depth and breadth of study along departmental 
boundaries. In the limited research examining the role of breadth of study for instance, a student’s breadth 
of study is determined by coursework in departments. Seah et al. (2020 examine the effect of a reform 
that allowed some, but not all, students to enroll in more courses outside of their major departments at the 
National University of Singapore. They argue that increased coursework outside of a student’s major 
represents breadth of study and, using a difference-in-difference design, find that enrolling in a broader 
course of study has no effect on student’s short term labor market outcomes. Similarly, Goldhaber et al. 
(2015) examine the association between breadth of study and labor market outcomes using administrative 
data from the state of Washington. They first define a distance between two courses as the correlation 
between the number of courses student took in each of the two departments the courses are offered in. 
They then operationalize a student’s breadth of study based on the average correlation between the 
average distances of all pairs of courses. Breadth of study in some terms of student’s career is associated 
with increased earnings, but higher breadth of study over a student’s entire course-taking career is 
associated with decreased earnings. Goldhaber et al. conclude that breadth of study may be best in 
moderation. In both cases, the department is the primary driver of breadth. The assumption seems to be 
that departmental boundaries meaningfully track the development of the diversity of knowledge, values, 
and skills that breadth of study is thought to entail. However, such an assumption obscures the relations 
between individual courses. On these measures, a pre-medical biology student enrolling in an English 
course on Shakespeare or an English course on the literature of disease are experiencing an identical 
amount of breadth. However, it seems that these represent quite different experiences. Although both 
courses would likely teach humanistic and literary modes of inquiry, the former is a more drastic move 
away from a pre-medical biology students’ area of expertise while the latter seems to fit into the student’s 
overall course-taking and might be regarded as furthering depth of study. 
 With regards, depth of study, a large literature has examined the effects of majors or credits 
accumulated in specific fields (for instance, Altonji et al., 2012; 2014; Bleemer and Mehta, 2022; Kinsler 
& Pavan, 2015; Stange, 2015). Again, this largely assumes that depth of study is comprised of specific 
courses in a department or major rather than in the kinds of knowledge, values, and skills a student 
accumulates through courses. While completing a major is one way to develop depth of study it is not the 
only way: majors are an instrumental tool to ensure depth of study and not equivalent to the concept itself. 
In both the research on breadth of study and that of depth of study, the assumption is that the knowledge, 
values, and skills learned through coursework can be neatly divided into departmental or major 
categories.  

However, approaches that measure breadth and depth of study as coursework in departments or 
majors do not track the intuitive notions of breadth and depth. Intuitively, depth and breadth of study refer 
to the concentration/dispersion of knowledge, skills, values, and modes of reasoning a student acquires in 
their study while these threads of research largely rely on course enrollment in specific departments or 
majors. While departments are loosely organized around knowledge, skills, and values, they do not 
perfectly divide them. In a qualitative study of ideas of breadth and depth, Brady (n.d.) asks academic 
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advisors to evaluate the breadth and depth of student transcripts and discuss their reasoning. Two broad 
themes emerged from these interviews. First, advisors note that depth of study extends across 
departments, contradicting the notions of depth and breadth employed in previous studies. According to 
these academic advisors, a student majoring in environmental studies and the earth sciences is developing 
depth of study through complementary coursework in both of their two majors. Second, advisors noted 
that breadth and depth of study are difficult to understand in isolation from one another. From this 
perspective we may think that a pre-med student majoring in biology may appear to be pursuing a 
substantial breadth of study across many departments but, in reality, is completing a prescribed set of 
courses that prepare them for graduate study. Without the context of a student’s major, it is difficult to 
know whether a student is truly developing breadth of study. As such, I argue that exploring the role 
depth and breadth play in the American curriculum requires us to identify measures of course similarity 
that examine the concentration and dispersion of knowledge, values, and skills learned across a transcript. 
Students develop depth of study by studying courses that are meaningfully similar to one another and 
breadth of study by exploring a variety of courses that are meaningfully dissimilar from one another. 

However, Brady’s qualitative data also made clear that a wide variety of definitions of breadth 
and depth were employed by advisors, suggesting more exploratory work needs to be done to clarify these 
concepts. This ambiguity in definitions motivates my empirical approach as I pursue what Grimmer et al. 
(2022) call an inductive exploratory approach to applying machine learning to my research question. 
They argue that the traditional approach to quantitative research emerged in a time when data was 
relatively scarce. This lack of data motivates researchers to theorize and develop hypotheses prior to 
examining their data and leads to a research paradigm in which exploratory data analysis of the kind I 
pursue is perceived as undermining the validity of inferences. However, with the rise of digital and 
administrative data, Grimmer, Roberts, and Stewart argue we no longer operate in a data scarce 
environment and, as such, can use statistical methods from machine learning to explore and organize a 
subset of our data and develop new inductive theory and measures. In this paradigm, we use statistical 
methods to help us explore data and suggest organizations of data that can be generative for future 
research. These measures can then be applied to unseen data and test the validity of our theories without 
undermining our inferences. In a world in which researchers can access tens of thousands of course 
transcripts or conceivably collect the course catalogs of most institutions online, researchers can afford to 
explore a portion of their data using quantitative methods and develop inductive theories before testing 
these theories deductively on new data. This explorative approach to quantitative research aligns itself 
more closely with the inductive paradigm of qualitative methods such as grounded theory than paradigms 
of quantitative research that stress forming testable hypotheses before examining data. 

Given the preceding, I can now more precisely state the objectives for the remained of this paper. 
My objective is to develop statistical measures of breadth and depth of study that capture the intuitive 
notions discussed by advisors in Brady (n.d.). I develop these measures as an exploratory tool to help us 
organize student’s course-taking with the belief that future research can use them as tools to examine the 
effect of breadth and depth of study on student outcomes. In what follows, drawing on neural embedding 
approaches from natural language processing and learning analytics, I develop two measures of course 
similarity that allow us to organize student course-taking into more and less similar coursework without 
relying on departmental boundaries. First, I develop measures of similarity that capture course similarity 
through the semantic content of course descriptions. Second, I develop measures of similarity that capture 
similarity through the structural similarity in student course taking.  I argue that these measures provide a 
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new and rich way to organize the post-secondary curriculum that captures the intuitive notions of depth 
and breadth of study that organize the American post-secondary curriculum. 

 
Data 

 
To develop measures of course similarity and breadth/depth of study I draw on three sources of data: 

text data from course catalogs at many institutions including the University of Michigan, administrative 
data from the University of Michigan, and records of course equivalencies from the University of 
Michigan’s Registrar. I describe each of these data sources below. 
 
Text Data 
 

Course catalog text data for this project comes from a variety of sources. The primary text data 
comes from the University of Michigan’s institutional course catalog API and contains 8,821 unique 
course records with descriptions. Because the quality of word embeddings tends to improve when 
provided with greater amounts of training data, I supplement the course descriptions from the University 
of Michigan with course descriptions from three additional sources. First, I include 34,056 course 
descriptions from six partner institutions collected as part of the College and Beyond II project. Second, I 
include 32,411 course descriptions from three institutions that were generously provided to me from 
Coursicle, a for-profit company that provides college students resources from course catalogs and course 
schedules. Finally, I include 345,568 course descriptions collected from 96 institutions by the Incite 
research group at Columbia University. In total, this gives me a full dataset of 420,856 unique course 
descriptions. 

In addition to these large course description datasets, I rely on a smaller set of course descriptions 
for validation. Drawing on the National Center for Education Statistics College Course Map, I identify ten 
courses present at 11 institutions across the country. The College Course Map provides a typology of 
courses based on nationally representative samples of student transcripts (Bryan and Simone, 2012). For 
each College Course Map code in my validation sample, if the institution offers a course that meets this 
code, I collect the associated course description from publicly available course catalogs. This generates a 
validation dataset of 988 course pairs that have similar course content across 11 institutions.  Table 1 
summarizes the validation course content and provide example descriptions. Supplementing course 
descriptions that cover the entirety of the University of Michigan, I use a limited list of 2,792 courses that 
meet general education requirements within the College of Literature, Science, and the Arts as a 
validation method. 
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Table 1: 
Example Validation Course Descriptions 

CCM Code CCM Description N Example Description 

54.0102 American History 
United States 11 

Introduction to the nature and methods of historical study and examination of specific topics 
focusing on significant periods in the development of the U.S. and considering them in the light of 
certain elements shaping that history. Among these elements are the constitutional and political 
system; and the society’s ideals, structure, economic policy, and world outlook. 

23.1301 General Writing 11 Expository writing with emphasis on effective communication and critical thinking. Emphasizing 
the writing process writing topics are based on selected readings and on student experiences.  

45.1101 Sociology 11 Fundamental concepts of sociology and introduction to the analysis of social problems and 
interactions (e.g., wealth, gender, race, inequality, family, crime) using sociological theories. 

38.0101 Philosophy 11 Inquiry into the meaning and justification of fundamental ideas and beliefs concerning reality, 
knowledge, and values; application to relevant topics in ethics, religion, and politics.  

52.0501 Business 
Communications 10 

Principles of business communication through letters, memos, email, text messages, group 
leadership and participation and presentations. Clear, accurate, and focused communication; 
practical psychology with attention to communication ethics and diversity. 

42.0101 General 
Psychology 11 

A prerequisite to advanced courses; a broad survey of psychological science. Application of the 
scientific method to the empirical study of behavior with emphasis on individual and cultural 
differences. 

38.0201 Religious Studies 11 Introduction to the academic study of religion through comparison among major traditions 
(Judaism, Christianity, Islam, Hinduism, Buddhism, etc.) and smaller communities. 

52.0301 Accounting 11 
Introduction to financial accounting and accounting information systems (AIS), including basic 
concepts, limitations, tools and methods. Use of AIS-generated information, including financial 
statements in decision making by investors, creditors, and other users external to the organization. 

27.9995 Calculus 11 Vectors, functions, limits, derivatives, Mean Value Theorem, applications of derivatives, integrals, 
Fundamental Theorem of Calculus. 

5.0209 Folklore Studies 8 A general study of the field of folklore including basic approaches and a survey of primary folk 
materials: folktales, legends, folksongs, ballads, and folk beliefs. 
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Administrative Data 
 
 In addition to text data, I use administrative data provided through the University of Michigan’s 
Learning Analytics Research Architecture. This includes two data tables that include student level data  
including demographics and major, and course level attributes including student course-taking. For my 
analytical cohort, I include only data from 41,010 students who enter the University of Michigan as first- 
term freshman2 between Fall 2010 and Fall 2016.  
 
Course Similarity Data 
 
 Following Pardos and Nam (2019b), to validate the course2vec similarity measures I use a list of 
916 course equivalencies from the College of Literature, Science, and the Arts at the University of 
Michigan. Pairs of courses in this list have content that has been deemed too similar to receive credit for 
both courses by the institution.  
 

In Table 2, I provide a snapshot of a simulated transcript and associated course descriptions to 
provide greater context on my data. My objective in what remains in this paper is to develop methods that 
capture many of the notions of similarity that can be seen in Table 2, capturing the idea that ECON 370 
and EARTH SCIENCE 380 have meaningful similarities, both because they have similar language use of 
semantic content and because they are more likely to co-occur on student transcripts because they are 
likely to be taken by students with a particular interest in natural resources and the environment. 
 

Methods 
 

Foundations of Neural Embeddings for Representation Learning 
 
 Embedding approaches learn a low-dimensional representation that preserves much of the 
variation in high dimensional spaces like language or transcripts. While the numeric values of learned 
embeddings can be difficult to interpret, their ability to reduce high-dimensional information like text into 
lower dimensions while preserving the meaningful variation makes them particularly appealing as 
measures of similarity (Grimmer, et al. 2022). While embedding approaches have historically been 
employed since at least the 1980s, embedding methods have become increasingly popular since Mikolav 
et al. (2013) developed word2vec to efficiently learn representations of words in a low-dimensional space. 
The intuitive idea of word2vec is captured by Firth’s (1957) distributional hypothesis, pithily summarized 
by “you shall know a word by the company it keeps.” word2vec seeks to predict a target word based on 
the that word’s surrounding context. Mikolav et al. formalize Firth’s intuition as follows. Given a 
sequence of context words, w1, w2, … wt the objective of word2vec is to maximize the log probability of a 
target word: 

 
2 While measuring the depth and breadth of study to transfer students would be desirable, I am limited in my ability 
to acquire data that would allow my similarity measures to be meaningfully applied to students outside of the 
University of Michigan. The doc2vec requires course descriptions for courses and collecting course descriptions 
from all transfer institutions would be prohibitively time intensive. The course2vec approach requires transcripts 
from all institutions students are transferring from and has yet to be extended beyond two comparison institutions 
(Pardos et al., 2019a).  
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Table 2:  
Simulated Student Transcript 

Term Subject Catalog 
Number Course Title Course Description 

Fall 
2015 

Environmental 
Sciences 317 

Conservation 
of Biological 
Diversity 

Overview of historic and present-day causes of species extinction, 
and of biological principles central to species conservation and 
sustainable management of ecosystems. Topics covered include 
episodes of extinction and diversification over earth history; 
geographic distribution strategies; and sustainable use of 
ecosystems. Weekly recitation sections discuss material from 
lectures, assigned readings and films, and perform computer and 
gaming simulations.  

Fall 
2015 Earth Sciences 331 Climate 

Change 

This course examines the physical and chemical processes 
influencing Earth's climate and the methods of quantifying past 
and present climate change.  Emphasis is placed on understanding 
the mechanisms of climate change from ice ages through the near 
future.  The evidence of human-caused changes in climate is also 
discussed.  Students with interests in global change and the 
environment are encouraged to enroll.  A background in college 
science is not required. 

Winter 
2016 

Environmental 
Sciences 490 

War and the 
Environment:  
A Lethal 
Reciprocity  

This seminar examines war and environmental degradation.  We 
begin with the recognition that:  a) war and the preparation for war 
typically lead to depletion and degradation of the biosphere; and 
b) resource mail-distributions, depletion, and degradation can 
frequently lead to armed conflict within and between territorial 
states. 

Winter 
2016 Earth Sciences 380 

Natural 
Resources, 
Economics, 
and the 
Environment 

This course deals with natural resource-related challenges in a 
complex society. The course discusses the origin, distribution, and 
remaining supplies of natural resources, including fertilizers, 
metals and fossil fuels, in terms of the economic, engineering, 
political, and environmental factors that govern their recovery, 
processing, and use. Topics covered in the course include nuclear 
waste disposal, strip mining, continent-scale water transfers, 
mineral profits and taxation, and estimation of remaining mineral 
reserves. 

Winter 
2016 Economics 370 

Environmental 
and Resource 
Economics 

This course focuses on the contribution economics has made in 
understanding and managing environmental and natural resource 
problems. The course will analyze the sources of environmental 
and natural resource problems using economic tools. Given this 
knowledge students will learn how these economic tools, through 
market-based incentives, may resolve these problems. Finally, 
we'll take a look at real policies and discuss the problems of 
transitioning policies from theory into the practical realm. 
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where wt is the target word and wt-k, … wt-1 and wt+1, … wt+k are the context words in a k token window 
preceding and following the target word. For instance, given the sentence “the cat sat on the mat,” we 
might seek to maximize the probability of predicting the target word “on” by providing the 2 context 
words preceding and following it, “cat”, “sat”, “the”, “mat”. Typically, the prediction task is done via a 
multiclass classifier like softmax or some variation like hierarchical softmax that captures the intuition of 
softmax while providing a more efficient training algorithm. In the case of a softmax multiclass classifier, 
we have: 

𝑝(𝑤&|𝑤&#% , … , 𝑤&(%) = 	
𝑒)!"
∑ 𝑒)$$

 

Where each of yi is an un-normalized log-probability for each output word i, computed as 
 

(1) y = b + Uh(𝑤&#% , … , 𝑤&(%;𝑊) 
 
where U, b are the softmax parameters and h is constructed by averaging the word vectors extracted from 
W that represent the context words. In W, each word is associated with an N-dimensional vector, where N 
is a tunable hyperparameter.   
 

Typically, neural word embeddings are trained using stochastic gradient descent until training 
converges. Remarkably, after this training task, word2vec models tend to learn vector representations that 
capture semantically meaningful information about words. For instance, Mikolav et al. (2013) train a 
model that correctly identifies vectors that approximate the following equation: king - man + woman = 
queen. Representation learning models like word2vec tend to outperform simpler representations of 
language like bag-of-words in downstream natural language processing tasks and have been applied to a 
variety of social science concerning the similarity of words (for instance, Garg et al, 2018; Lucy et al., 
2020; Rodman, 2020). However, because my unit of analysis is the course, not individual words, I 
consider two modifications of the word2vec approach. 
 
doc2vec 

 
Building on word embedding models, Le and Mikolov (2014) develop doc2vec to learn 

distributed representations of paragraphs and short documents. While word2vec learns neural 
representations that embed words in a low-dimensional space, doc2vec learns representations that embed 
the entire content of a short document. The only modification to training doc2vec rather than word2vec 
algorithms is a modification to equation (1). In the word2vec case, we train a model to predict the target 
word from an average of the context words vectors. In the doc2vec case, we assign each document a 
document id in a matrix D and include the vector associated with this id in constructing h from W and D. 
In word2vec, we use the average of vectors from the context words to predict our target; in doc2vec, we 
use the average of vectors from the context words and the vector associated with the document id. Like 
word2vec, in doc2vec words and document ids are associated with an N-dimensional vector, where N is a 
tunable hyperparameter. This process maps both documents and words to N dimensional vectors in the 
same vector space. For instance, given the sentences “the cat sat on the mat” with document id 1 and “a 
cat sat on the mat near me” with document id 2, we could predict the context word “on”. With regards the 
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first document, we predict “on” with the average of vectors associated with “cat”, “sat”, “the”, “mat”, and 
the vector associated with document id 1. With regards to the second document, we would predict “on” 
with the average of vectors associated with “cat”, “sat”, “the”, “mat”, and the vector associated with 
document id 2. In this toy example, we would anticipate that the paragraph vectors associated with 
document ids 1 and 2 would be highly similar, because the text of the documents is very similar. 

doc2vec, like word2vec, has been applied to social science questions. For instance, Nay (2016) 
use doc2vec to learn representations of governmental institutions, where the document id for a given 
speech is the institution that gave that speech. Analogously, in my case, I learn representations of courses, 
where the document id is the unique course identifier and the text used to train the model to represent a 
course is a course description. When measuring the similarity of two courses using doc2vec, I assume that 
each course generates a course description based on its content and that this content proxies the 
knowledge, values, and skills learned a student would learn in a course. As a result, the similarity of two 
courses’ vectors learned from course descriptions captures the similarity of those courses' content. 
 
Preprocessing Text for doc2vec 
 
 doc2vec models operate on sequences of tokens. I pre-process course descriptions by lower 
casing all text, remove punctuation, split documents into tokens on white spaces, remove all words that 
occur fewer than five times, and remove stopwords.3 I then remove administrative information such as 
notes about prerequisites, credit numbers, course equivalencies, and former course names. After this 
preprocessing, I remove course descriptions with fewer than three tokens remaining because the language 
used in these descriptions are unlikely to meaningfully capture the content of course. Largely, this means 
removing special topics and independent study courses that lack substantive information about their 
content in the descriptions provided. This results in a dataset of 5,700 course descriptions that covers 
approximately 91% of all courses among freshmen in my sample. 
 
Training and validating doc2vec embeddings of courses 
 

As noted above, the dimensionality of a word2vec embedding model is a tunable hyperparameter. 
I empirically tune the number of vectors in my doc2vec model by training 92 models for a range of 
plausible values from 8 to 100 vectors for 300 epochs then evaluating the performance of each model on 
three evaluation tasks. Embedding methods minimize an objective function but there is no guarantee that 
the results capture a statistical relationship of theoretical interest to social scientists. As such, the results 
of learned embeddings must be validated to be useful in developing theory in the social sciences.  

Embedding methods can be evaluated with both intrinsic and extrinsic approaches (Grimmer et 
al., 2022). In intrinsic approaches to validation, we explore whether the similarity metrics captured by the 
model track similarity determined by experts. In extrinsic methods, we explore whether the learned 
embeddings are useful in downstream prediction tasks that we would anticipate they should be if we were 
accurately capturing the meaning of text. As my primary means of doc2vec model validation, I use 
intrinsic evaluation methods and provide supplementary extrinsic validation performance as further 
evidence that the learned doc2vec embeddings are meaningfully capturing course content. 

 
3 All training of doc2vec and course2vec models is done in python using nltk (Bird et al., 2009), pandas (McKinney, 
2010) and gensim (Rehurek & Sojka, 2011). To remove stopwords, I use nltk’s corpus of stopwords for English. 
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For my primary intrinsic evaluation methods, I evaluate whether the similarity of two courses 
with similar content is higher than the similarity of one of these courses and a randomly sampled course 
from my full corpus. As noted above, I collect a set of 988 validation pairs of similar courses across 11 
institutions using the College Course Map typology to determine similar courses. For each validation pair 
of courses, I randomly sample 10 courses from my corpus and compare the similarity of the validation 
pair of courses against that of one of the courses and the randomly sampled courses. This yields 9,880 
similarity scores. I choose the model with vector size that maximizes the number of courses correctly 
assigning higher similarity to the similar pair relative to the sampled course. Based on this validation 
method, I choose a model with vector size 13 that correctly assigns a higher similarity to validation pairs 
relatively to one course from the validation pair and a random course from my corpus approximately 91% 
of the time.  

Figure 1 presents a t-SNE plot of this model’s embeddings of my 105 validation courses, 
suggesting the chosen models’ embeddings capture intuitive senses of these courses. The t-SNE algorithm 
allows us to visualize high-dimensional space by finding a two-dimensional representation of the higher 
dimensional space that preserves the distance between a point and its closest neighbors (Maaten & 
Hinton, 2008). In this figure, each point represents a course, and the location of each point (or course) is 
derived from a two-dimensional approximation of the thirteen-dimensional doc2vec embedding. In Figure 
1, two points (or courses) are closer to one another if their associated embeddings are more similar, and 
courses are colored according to the type of course. This provides qualitative evidence that the learned 
embeddings are capturing intuitive ideas about courses. Examining the top right quadrant, for instance, 
we see that 1). general writing courses (red) are typically closer to business communication courses 
(orange), 2). business communication courses are typically closer to accounting (light green) courses, and 
3). business communication courses are largely in the space between general writing and accounting 
courses. In sum, this suggests the chosen model’s vector embeddings have successfully captured content 
of business courses like accounting, content of composition courses like writing, and the intuitive idea 
that business communication courses have a combination of both business and writing content. 
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As supplementary evaluation metrics, I use the learned doc2vec embeddings of the best 

performing model on my intrinsic evaluation task as features in gradient boosted decision trees predicting 
structural aspects of courses. First, I predict whether courses satisfy general education requirements 
within the College of Literature, Science, and the Arts at the University of Michigan. For each 
requirement, I train a gradient boosted decision tree on all courses that meet that requirement and a 
random sample of courses that do not meet that requirement of equivalent size. This model uses the vector 
embeddings of those courses as features. I split the data into a 90 percent training set and 10 percent test 
set and select the number of trees based on five-fold cross-validation within the training set. Table 3 
summarizes the model accuracy on unseen test data for each requirement. In all cases, the predictive 
accuracy of these models is higher than chance, ranging from moderate to strong predictive accuracy, 
even when provided with limited training data. This suggests that the learned embeddings of the chosen 
doc2vec model meaningfully capture the content of courses that would qualify courses to meet general 
education requirements. 
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Table 3 
Accuracy of Models Predicting General Education Requirements Using doc2vec Embeddings 

General Education Requirement N Training Accuracy Test Accuracy 

Natural Science 602 0.994 0.869 

Social Science 928 0.966 0.785 

Quantitative Reasoning 236 1 0.875 

Writing Requirements 506 0.905 0.647 

Race and Ethnicity 608 0.991 0.82 

Humanities 2116 0.915 0.788 

Math and Symbolic Analysis 78 1 0.875 

Creative Expressions 174 1 0.944 

 
 As a second form of extrinsic validation of my chosen model’s doc2vec embeddings, I divide 

departments that courses are offered in into a set of seven broad disciplines based on the Classification of 
Instructional Programs code associated with the department and predict the discipline associated with 
each course using gradient boosted decision trees. Again, I split the data into a 90-10 train and test set and 
tune the number of trees in the gradient boosted decision tree using five-fold cross validation within the 
training set. The mapping of departments into disciplines is available in Appendix A. This model achieves 
a training accuracy of 82% on the training set and 70% on the unseen test set, suggesting the learned 
embeddings meaningfully capture aspects of a course’s disciplinary context. 
 

Figures 2 and 3 display t-SNE plots of the learned embeddings for courses from the University of 
Michigan. In Figure 2, I include all courses with each course colored according to the broad discipline it 
is associated with. Qualitatively, moving from left to right we see the doc2vec embeddings capture 
intuitive notions of the “hardness” of the disciplines. Broadly, humanities courses (dark blue) are on the 
left, social sciences courses (light blue) are near the middle, and the hard sciences (red) and engineering 
(orange) are on the right with the social sciences largely dividing the humanities from the natural sciences 
and engineering. In Figure 3, I highlight only courses from three departments - math (green), statistics 
(blue), and biology (green) - in the same t-SNE locations as Figure 2. This suggests that the doc2vec 
embeddings also capture finer grained departmental distinctions. For instance, while the majority of 
courses from these three departments occupy the space associated with the natural sciences in Figure 2, in 
general, math and statistics courses are closer to one another than biology. However, math and statistics 
courses for computational biology and neuroscience are closer to biology courses, while courses in math 
and statistics education occupy a space closer to that of the social sciences, near the middle of the space. 
Again, this suggests that the doc2vec embeddings have captured intuitive ideas of course content.  
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Figure 4 displays only the courses a single student that majored in environmental studies and 

earth sciences enrolled with courses in the same locations as the previous figures determined by the t-SNE 
algorithm. Because the two-dimensional approximation of the 13-dimensional vectors may not fully 
capture similarity of two courses in the higher dimensional embedding, I connect pairs of courses whose 
embeddings have a cosine similarity of 0.6 or higher with an edge. Capturing the intuitive notion of depth 
discussed by advisors in Brady (n.d.), we see that courses in environmental studies (red) and earth 
sciences (blue) are part of a large densely connected component of coursework across two departments 
and other courses in the natural sciences. While these courses are from two separate departments and are 
associated with two majors, they have very similar content. However, we also see the possible role of 
general education courses in creating breadth of study, as the loosely connected courses in the lower left 
corner satisfy the student’s language requirements through coursework in Italian and the student’s 
humanities requirements through coursework in the history of classical civilizations. The connections 
between these courses indicate that perhaps this student has a supplementary interest in Italian language 
and Roman culture. 

In sum, I have presented a series of quantitative evaluation methods and qualitative figures, that 
suggest that the learned doc2vec embeddings capture the intuitive notions of course content I set out to 
measure. Further, in Figure 4, I present qualitative evidence that the learned embeddings capture intuitive 
notions of depth and breadth of study we sought to capture. Highly similar courses across departments are 
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placed closer together and have a high cosine similarity while the role of highly dissimilar courses outside 
the student’s major can be seen as providing depth. 
 
course2vec 

 
In course2vec, we treat each transcript as a sentence of “words” where each word is a unique 

course id and use word2vec to learn a neural embedding representation of courses based on the context 
courses that are enrolled in. Intuitively, if two courses occur in similar contexts in a transcript, we may 
believe that they have similar content. Just as in word2vec, the training objective of course2vec is: 
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However, rather than predict the target word from surrounding context words in a sentence, we 

predict a target course, from the surrounding context courses on a student transcript. In word2vec, when 
given the sentence “the cat sat on the mat”, we predict “on” from the vectors representing “cat”, “sat”, 
“the”, and “mat.” In course2vec, when given the student transcript “MATH 105, CHEM 112, BIOL 130, 
ENGL 125, SPAN 115”, we predict “BIOL 130” from the vectors representing “MATH 105”, “CHEM 
112”, “ENGL 125”, and “SPAN 115.” In a series of studies, Pardos and collaborators have shown that 
course2vec embeddings capture disciplinary divides, predict structural features of courses including the 
language used in course descriptions, and can be useful in downstream tasks including course 
recommendation and course articulation (Pardos et al., 2019a, 2019b; Pardos and Nam, 2020; Jiang and 
Pardos, 2020). 

 
When measuring similarity of two courses using course2vec, I assume that each course occurs in 

a location on a student transcript based on its content and, as a result, the similarity of two courses’ 
locations on student transcripts capture the similarity of those courses' content. Courses that are more 
similar are more likely to be found in similar places on student transcripts and courses that are less similar 
are less likely to be found in similar places on student transcripts. 

 
Training and validating course2vec embeddings of courses 

 
To convert a transcript into a sentence, following Pardos and Nam (2020), I associate each course 

id with a token randomly shuffle the order of courses within a semester, then append the courses together 
into a single “sentence.” At the University of Michigan, each course is associated with a unique id that is 
stable over time (in cases where the catalog number or subject description change) and across cross-listed 
courses. I tune both the vector size and context window of course2vec models and again evaluate the 
model intrinsically and extrinsically. I explore models with between five and 300 vectors and context 
windows of lengths between two and thirty. Because course2vec is learned from student transcripts, the 
coverage is much higher than that of doc2vec. Prior to training, I remove all unique course ids that have 
fewer than five instances across transcripts, to avoid noisy vectors. After removing these courses, I am 
able to associate course2vec vectors with more than 99.9% of courses in my sample. 
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Because course2vec learns neural embeddings of courses at a single institution, I cannot use the 
same intrinsic validation set as doc2vec. Instead, following Pardos et al. (2019b), I evaluate the similarity 
of 916 pairs of course equivalencies. These are courses that have content that has been determined to be 
so similar a student can only receive credit for one course from the pair. Again, I compare the similarity 
of a pair of similar courses against that of one of the courses and a random selection of 10 other courses, 
resulting in 9160 validation pairs. I choose the model that maximizes the number of times a pair of similar 
courses is more similar than one of that pair of courses and sampled courses. Results of this intrinsic 
evaluation task suggest a model with 140 vectors and a context size of 23 that correctly assigns higher 
similarity scores to approximately 91% of evaluation pairs.  

Following model selection, I extrinsically evaluate the model’s learned embeddings by again 
predicting whether the course meets general education requirements and the broad discipline the course is 
associated with gradient boosted decision trees, tuning the number of trees using cross-validation on 90 
percent training set and evaluating performance on a 10 percent unseen test set. Table 4 summarizes the 
results of the extrinsic evaluation task of predicting general education requirements, showing that, in line 
with the work of Pardos and colleagues, the course2vec embeddings are reasonably effective in predicting 
course features. However, the course2vec embeddings appear to be less effective at predicting general 
education requirements than the best doc2vec embeddings in my context.  

Similarly, the performance of gradient boosted decisions trees trained to predict a course’s 
discipline using course2vec embeddings suggests the learned embeddings have some predictive power. 
After tuning, the trained model achieved 91% accuracy on the training set and 76% accuracy on the 
unseen test, outperforming the doc2vec embeddings on this extrinsic evaluation task. In sum, these 
intrinsic and extrinsic quantitative evaluation tasks suggest that the learned course2vec embeddings are 
meaningfully capturing similarity of courses and can predict structural aspects of courses. 
 
Table 4:  
Accuracy of Models Predicting General Education Requirements Using course2vec Embeddings 

General Education Requirement N Training Accuracy Test Accuracy 

Natural Science 526 1 0.755 

Social Science 710 0.958 0.789 

Quantitative Reasoning 202 1 0.667 

Writing Requirements 442 1 0.644 

Race and Ethnicity 342 1 0.743 

Humanities 1398 0.967 0.7 

Math and Symbolic Analysis 78 1 0.625 

Creative Expressions 288 0.996 0.862 
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In Figures 5, 6, and 7, I repeat many of the same visualizations previously shown with doc2vec 
embeddings using course2vec embeddings. In Figure 5 I show courses colored by discipline, in Figure 6 I 
show just mathematics, statistics, and biology courses, and in Figure 7, I show just the courses from the 
same student majoring in earth sciences and environmental science examined previously and add edges 
between pairs of courses if their cosine similarity is higher than 0.4. At a high level, these figures reflect 
similar trends to those in Figures 2, 3, and 4. In Figure 5, for instance, natural science and engineering 
courses generally cluster closer to each other and the social sciences while humanities courses are more 
likely to be near the social sciences than the natural sciences and engineering. In Figure 6, we see that 
math, statistics, and biology courses tend to cluster near each other in the portion of the space we attribute 
to the natural sciences and that there is a fairly distinct cluster of math and statistics courses near each 
other and farther away from biology courses, although the differences are less defined than when using 
the doc2vec embeddings. Finally, in Figure 7, we again see a connected component of courses across 
environmental sciences (red), earth sciences (blue), and other natural sciences in the top left corner. 
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Networks, Quantitative Measures of Depth and Breadth, and Descriptive Results 

  
 To convert course similarity measures of pairs of courses on a student’s transcripts into 
aggregated measures of depth and breadth across a student’s course-taking, I take two approaches. First, I 
take a simple mean of the cosine similarity of all pairs of courses a student took using both embedding 
approaches. Second, I convert similarity measures into a course similarity network. For each pair of 
courses a student enrolls in, I calculate the cosine similarity between those courses using both the doc2vec 
and course2vec embeddings. I then create a network where nodes represent each course a student takes 
during their enrollment and an edge between two nodes indicates that the courses have a high similarity 
according to the respective embedding. Figures 4 and 7, demonstrate this network for a single student’s 
courses.  Based on a qualitative examination of course similarity among courses in transcripts, I say that a 
course has high doc2vec similarity if the cosine similarity between two courses’ doc2vec embeddings is 
0.6 or higher and a course has a high course2vec similarity if the cosine similarity between two courses’ 
course2vec embeddings is 0.4 or higher.  
 Once converted into a network, we could examine the structure of student course-taking using 
any number of traditional network analysis measures including network density, betweenness, centrality 
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of nodes, and community detection. To capture a simple intuition regarding breadth and depth, I focus on 
network density. Intuitively, a student with very deep learning in a topic will take very similar pairs of 
courses while a simple notion of breadth involves taking very dissimilar pairs of courses. To calculate the 
share of similar course pairs, we take the number of edges present in the network - that is the number of 
course pairs that have a high similarity - and divide by the number of possible edges in the network or the 
total combinations of course pairs a student enrolls in. For each student, this yields a number between 
zero and one that captures the density of similar course pairs they enroll in. A 0.01 increase in this score 
represents a one-percent increase in the number of course pairs that are highly similar. Using this 
approach, a student with a network density of zero experiences maximal breadth while a student with a 
network density of one experiences maximal depth.  

I calculate the mean similarity and the network density of all student’s course-taking and link 
these measures with student level characteristics from the university’s administrative data. In Table 5, I 
describe the mean similarity score and network density of graduates across race and ethnicity, sex as 
recorded in university administrative records4, estimated family income, and major discipline.  

Recall that course2vec measures structural similarity of courses: two courses are more similar if 
they occur in similar places on student transcripts. In contrast, doc2vec measures semantic similarity: two 
courses are more similar if the language they use in their course descriptions is similar. This difference 
between the doc2vec similarity and coruse2vec similarity can help to explain variation in these measures. 
For example, as measured by course2vec, the mean similarity and network density of humanities majors 
is higher than that of engineering majors. In contrast, similarity derived from doc2vec is higher for 
engineering majors than humanities majors. This suggests that, relative to engineering majors, the 
language used in courses that humanities majors enroll in is less similar but the course-taking patterns 
they follow are more similar. If all humanities majors were to enroll in chemistry courses in their first 
semester alongside introduction to composition, the course2vec similarity of these two courses would be 
high, although the doc2vec representations of the text used in their descriptions is unlikely to be.  

We can see similar dynamics with regards to particular social identities. Relative to male 
students, female students tend to enroll in more similar course-taking patterns but less semantically 
similar courses while, among race and ethnicity groups, Asian students enroll in the least structurally 
similar pairs of courses and the most semantically similar pairs of courses. 
  

 
4 The university documentation is relatively unclear whether this variable measures sex or gender and the timing of 
when this variable is measured. Over the timeframe I accessed this data, the documentation changed the name of the 
variable in question from gender to sex but does not indicate how this variable is measured (and if truly measuring 
sex, what determines a student’s sex in the data). In my view, social identities like sex, gender, and race are 
meaningfully socially constructed and I do not mean to endorse the view that these are fixed attributes. However, I 
am limited by the administrative data available and believe that it is helpful to examine the extent to which student’s 
social identities shape course-taking, breadth, and depth, although the measures are flawed. 
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Table 5:  
Means Similarity and Network Density by Demographics and Majors 

 N 
Proportion 
of Sample 

course2vec 
Similarity > 0.4 

course2vec Mean 
Similarity 

doc2vec  
Similarity > 0.6 

doc2vec Mean 
Similarity 

Overall Mean 41010 1.000 0.116 0.103 0.141 0.319 

Female 20907 0.510 0.130 0.110 0.131 0.307 

Male 20103 0.490 0.102 0.096 0.152 0.331 

2 or More Races 1467 0.036 0.118 0.103 0.136 0.316 

Asian 7008 0.171 0.091 0.088 0.153 0.332 

Black 1537 0.037 0.120 0.104 0.114 0.288 

Hispanic 1939 0.047 0.124 0.107 0.137 0.316 

Race Not Indicated/Other 2280 0.056 0.111 0.100 0.143 0.321 

White 26779 0.653 0.123 0.107 0.140 0.318 

Don't Know Family Income 9119 0.222 0.120 0.105 0.140 0.318 

Less than $100,000 10700 0.261 0.116 0.102 0.138 0.316 

More than $100,000 20955 0.511 0.114 0.102 0.144 0.321 

Business 3781 0.092 0.050 0.055 0.167 0.326 

Engineering 6754 0.165 0.102 0.102 0.198 0.383 

LA&S Humanities 4571 0.111 0.144 0.116 0.095 0.271 

LA&S Other 1806 0.044 0.118 0.105 0.094 0.267 
LA&S Physical and 
Biological Sciences 5484 0.134 0.065 0.074 0.146 0.329 

LA&S Social Sciences 8385 0.204 0.095 0.096 0.103 0.281 

Other Professional 10229 0.249 0.183 0.136 0.153 0.332 

 
In Table 6, I describe the mean similarity score and network density of one class of entering 

freshman over eight semesters and four years. For each term, I calculate the similarity of all pairs of 
courses each student took within that term. Unsurprisingly, mean scores are lowest in the first fall and 
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winter of this cohort’s time in college, suggesting breadth of study is most intense in the first year. Depth 
of study as measured by doc2vec embeddings peaks in the Winter of junior year, but depth of study as 
measured by course2vec embeddings increases monotonically over the course of a student’s enrollment. 
While students are enrolling in semantically distinct courses in their final year, they also seem to be 
following somewhat predictable course-taking patterns. 
 
Table 6: 
Course-taking Similarity by Term 

Term course2vec Similarity > 0.4 course2vec Mean Similarity doc2vec Similarity > 0.6 doc2vec Mean Similarity 

Freshman Fall 0.026 0.048 0.197 0.386 
Freshman 
Winter 0.021 0.029 0.187 0.371 

Sophomore Fall 0.037 0.072 0.219 0.392 
Sophomore 
Winter 0.062 0.08 0.223 0.393 

Junior Fall 0.144 0.152 0.242 0.429 

Junior Winter 0.18 0.177 0.276 0.455 

Senior Fall 0.195 0.195 0.245 0.429 

Senior Winter 0.225 0.218 0.243 0.419 

 
Exploratory Regression Analysis 

 
In Table 7, I present exploratory regressions of associations with depth and breadth, regressing 

measures of course similarity on demographics, field of study, and high school GPA using OLS. My 
analytical sample for this portion of the analysis contains 39,832 freshman who entered the University of 
Michigan between Fall 2010 and Fall 2016, received a bachelor’s degree, and have a non-missing high 
school GPA. In specification (1), I regress on the mean cosine similarity of all pairs of courses a student 
takes using course2vec embeddings. In specification (2), I regress on the proportion of pairs of courses 
that have a cosine similarity above 0.4 using course2vec. In specification (3) I regress on the mean cosine 
similarity of course pairs using doc2vec embeddings and in (4), I regress on the proportion of courses 
with cosine similarity greater than 0.6 using doc2vec embeddings. My demographics variables include 
categorical variables of students reported estimated family income (with reference category of estimated 
family income greater than $100,000), race and ethnicity (with reference category of White), and sex 
(with reference category of Female). The field of study variable is a categorical variable measuring the 
broad discipline the student received their first degree in (with reference category of majoring in the 
Natural Sciences), and high school GPA is a continuous variable. I stress that these regressions should be 
interpreted solely as associations and should not be read as claiming causal relationships between 
variables. 
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Table 7: 
OLS Regression of Course Similarity on Demographics and Field of Study 

 Dependent variable: 

 course2vec Sim. 
course2vec  
Sim. > .4 

doc2vec 
Sim. 

doc2vec  
Sim. > .6 

 (1) (2) (3) (4) 

Don't Know Family Income 0.002*** 0.002*** -0.001* -0.002*** 
 (0.001) (0.001) (0.001) (0.001) 
     

Family Income < $100,000  -0.0001 0.002*** -0.003*** -0.003*** 
 (0.001) (0.001) (0.001) (0.001) 
     

2 or More Races -0.007*** -0.006*** -0.003* -0.004*** 
 (0.001) (0.002) (0.001) (0.002) 
     

Asian -0.015*** -0.019*** 0.005*** 0.004*** 
 (0.001) (0.001) (0.001) (0.001) 
     

Black -0.008*** -0.009*** -0.012*** -0.008*** 
 (0.001) (0.002) (0.001) (0.002) 
     

Hispanic -0.003*** -0.002 -0.0002 -0.001 
 (0.001) (0.002) (0.001) (0.001) 
     

Race Not Indicated/Other -0.007*** -0.010*** -0.001 -0.002 
 (0.001) (0.001) (0.001) (0.001) 
     

Male -0.012*** -0.018*** 0.008*** 0.007*** 
 (0.0005) (0.001) (0.001) (0.001) 
     

Business Major -0.018*** -0.011*** -0.003*** 0.020*** 
 (0.001) (0.001) (0.001) (0.001) 
     

Engineering Major 0.030*** 0.030*** 0.053*** 0.051*** 
 (0.001) (0.001) (0.001) (0.001) 
     

Humanities Major 0.036*** 0.040*** -0.053*** -0.046*** 
 (0.001) (0.001) (0.001) (0.001) 
     

Other Liberal Arts Major 0.025*** 0.020*** -0.058*** -0.046*** 
 (0.001) (0.002) (0.001) (0.002) 
     

Social Science Major 0.019*** 0.009*** -0.045*** -0.040*** 
 (0.001) (0.001) (0.001) (0.001) 
     

Professional Major 0.061*** 0.082*** 0.004*** 0.010*** 
 (0.001) (0.001) (0.001) (0.001) 
     

High School GPA -0.021*** -0.021*** 0.021*** 0.032*** 
 (0.001) (0.002) (0.001) (0.001) 
     

Constant 0.164*** 0.136*** 0.244*** 0.020*** 
 (0.005) (0.007) (0.005) (0.006) 
      

Observations 39,823 39,823 39,823 39,823 

R2 0.263 0.232 0.350 0.299 

F Statistic (df = 15; 39807) 948.981*** 799.999*** 1,426.295*** 1,132.697*** 
 

Note: * p < .10 **p <.05***p<0.01 
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Unsurprisingly, we can see that major field of study is a statistically significant and relatively 
large predictor of a student’s course similarity, all else held equal. For instance, looking at column (2), 
relative to majoring in natural science, majoring in engineering is associated with a 3-percentage point 
increase in the share of highly similar course pairs a student enrolls in while majoring in social science is 
associated with a .9 percentage point increase, all else being equal. However, in some cases, student’s 
social identities have as large an or larger magnitude of association with measures of course similarity. 
Relative to female students, male students are associated with a 1.8 decrease in the share of highly similar 
pairs of courses, as measured by course2vec. In contrast, some social identities show little meaningful 
variation. If we take estimate family income as a proxy for socio-economic class, for instance, we see 
statistically significant but very small estimates across income brackets, suggesting there may not be as 
large a difference in depth and breadth of study across class. 
 

Limitations 
 
 When using both course2vec and doc2vec approaches we make assumptions about what counts as 
similarity. However, these assumptions may not perfectly align with intuitive ideas about similarity 
operating in discussions of depth and breadth. For instance, in the doc2vec case, the model may assign 
high similarity to two courses if they use similar language about assignments or structure. For instance, an 
introduction to chemistry course that uses words like “survey”, “introduction”, and “quiz” in its 
description and an introduction to Greek course that uses similar words may have high similarity 
according to doc2vec despite seeming to represent drastically different modes of teaching and course 
content. Similarly, course2vec defines similarity based on the structure of student transcripts. Given this, 
courses that students tend to enroll in early in their career may have strong similarity; since students often 
take introductory courses in a variety of subjects in their first few terms, these courses may have high 
similarity despite have different content. Pardos et al. (2020) find that the large majority of lower division 
courses tend to cluster near one another and have high similarity while more specialized coursework in 
specific disciplines is relatively distinct from lower division courses. This means that these approaches 
may not perfectly capture notions of similarity implicit in discussions of breadth and depth of study. 
 

Future Work 
 
 In this study, I explored two approaches to course similarity that allow us to derive measures of 
breadth and depth of study and link these measures with student characteristics. However, much of the 
motivation for depth and breadth of study concerns how they affect longer term life outcomes such as 
effective democratic participation, labor market outcomes, and life satisfaction (Bok, 2006; Goldhaber et 
al., 2015; Seah et al., 2020). As such, a necessary next step is to analyze the relationship between 
measures of breadth and depth and these outcomes. For instance, using a human capital framework from 
economics, we might associate breadth of study with general skills and depth of study with specific skills 
and make a set of predictions about the relationship between depth/breadth of study and labor market 
outcomes. Using this framework, we might anticipate that students with greater depth have higher wages 
immediately after graduation due to greater specific skills, while students with greater breadth of study 
wages will grow more quickly over time and their labor market outcomes may be more robust to labor 
market shocks. 
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 Methodologically, there is also potential to improve similarity measures. For instance, one could 
combine the doc2vec and course2vec approaches in a multi-task learning approach. Such an approach 
would simultaneously learn an embedding for each course that maximize its ability to predict courses on a 
transcript and the contents of course descriptions. Finally, I only calculated depth/breadth of study at a 
single institution. Finding ways to align measures across a wide variety of institutions is an important area 
for future research. 
 

Conclusion 
 

Institutions devote substantial effort to ensuring students balance both breadth and depth. 
However, we have little empirical evidence that these curricular structures improve student outcomes and 
are worth requiring for all students. Drawing on approaches to neural embeddings from learning analytics 
and natural language processing techniques and novel sources of data like course description text, I 
developed tools that make legible the complexity of depth and breadth in course-taking at one post-
secondary institution through measures of course similarity. I provided evidence that my measures of 
similarity capture notions of course content through both intrinsic and extrinsic evaluation methods. 
Aggregating these measures to the student level, I then explored how these measures of course-taking 
breadth and depth correlate with student demographics and field of study. While exploratory, this analysis 
suggests that some social identities may play as large or larger a role as field of study in shaping breadth 
and depth. Developing meaningful measures of breadth and depth of study is a necessary prerequisite for 
future research that explores how these constructs may affect longer term outcomes and whether 
institutions should continue to require participation in curricular structures that were developed for 
students of the early 20th century.   
  



Breadth and Depth of Study  

 

Paulson 28 

 
References 

Altonji, J. G., Blom, E., & Meghir, C. (2012). Heterogeneity in human capital investments: High school 

curriculum, college major, and careers. Annu. Rev. Econ., 4(1), 185–223. 

Altonji, J. G., Kahn, L. B., & Speer, J. D. (2014). Trends in Earnings Differentials across College Majors 

and the Changing Task Composition of Jobs. American Economic Review, 104(5), 387–393. 

https://doi.org/10.1257/aer.104.5.387 

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: Analyzing text with the 

natural language toolkit. O’Reilly Media, Inc. 

Bok, D. (2006). Our Underachieving Colleges: A Candid Look at How Much Students Learn and Why 

They Should Be Learning More. Princeton University Press. 

Bleemer, Z., & Mehta, A. (2022). Will studying economics make you rich? A regression discontinuity 

analysis of the returns to college major. American Economic Journal: Applied Economics, 14(2), 

1–22. 

Brady, J. (n.d.). College and Beyond II Phase 1 Validation Study. Unpublished Manuscript. 

Brint, S., Proctor, K., Murphy, S. P., Turk-Bicakci, L., & Hanneman, R. A. (2009). General Education 

Models: Continuity and Change in the U.S. Undergraduate Curriculum, 1975–2000. The Journal 

of Higher Education, 80(6), 605–642. https://doi.org/10.1080/00221546.2009.11779037 

Bryan, M. & Simone, S. (2012). 2010 College Course Map (NCES 2012-162rev). National Center for 

Education Statistics, Institute of Education Sciences, U.S. Department of Education.  

Firth, John Robert. 1957. (1957). Studies in Linguistic Analysis. Wiley-Blackwell. 

Garg, N., Schiebinger, L., Jurafsky, D., & Zou, J. (2018). Word embeddings quantify 100 years of gender 

and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–

E3644. https://doi.org/10.1073/pnas.1720347115  



Breadth and Depth of Study  

 

Paulson 29 

Goldhaber, D., Cowan, J., Long, M., & Huntington-Klein, N. (2015). College Curricular Dispersion: 

More Well-Rounded or Less Well Trained? CEDR Working Paper. WP# 2015-6. Center for 

Education Data & Research.  

Grimmer, J., Roberts, M. E., & Stewart, B. M. (2022). Text as data: A new framework for machine 

learning and the social sciences. Princeton University Press. 

Hart Research Associates. (2016). Recent trends in general education design, learning outcomes, and 

teaching approaches: Key findings from a survey among administrators at AAC&U member 

institutions. Washington, DC: Association of American Colleges and Universities. 

Jiang, W., & Pardos, Z. A. (2020). Evaluating Sources of Course Information and Models of 

Representation on a Variety of Institutional Prediction Tasks. International Educational Data 

Mining Society. 

Kinsler, J., & Pavan, R. (2015). The specificity of general human capital: Evidence from college major 

choice. Journal of Labor Economics, 33(4), 933–972. 

Lattuca, L. R., & Stark, J. S. (2009). Shaping the college curriculum: Academic plans in context. John 

Wiley & Sons. 

Le, Q., & Mikolov, T. (2014). Distributed Representations of Sentences and Documents. In E. P. Xing & 

T. Jebara (Eds.), Proceedings of the 31st International Conference on Machine Learning (Vol. 

32, Issue 2, pp. 1188–1196). PMLR. https://proceedings.mlr.press/v32/le14.html 

Maaten, L. van der, & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning 

Research, 9(Nov), 2579–2605. 

McKinney, W. (2010). Data Structures for Statistical Computing in Python. In S. van der Walt & J. 

Millman (Eds.), Proceedings of the 9th Python in Science Conference (pp. 56–61). 

https://doi.org/10.25080/Majora-92bf1922-00a 

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in 

Vector Space. ArXiv:1301.3781 [Cs]. http://arxiv.org/abs/1301.3781 



Breadth and Depth of Study  

 

Paulson 30 

Nay, J. J. (2016). Gov2Vec: Learning Distributed Representations of Institutions and Their Legal Text. 

Proceedings of the First Workshop on NLP and Computational Social Science, 49–54. 

https://doi.org/10.18653/v1/W16-5607 

Pardos, Z. A., Chau, H., & Zhao, H. (2019a). Data-Assistive Course-to-Course Articulation Using 

Machine Translation. Proceedings of the Sixth (2019) ACM Conference on Learning @ Scale, 1–

10. https://doi.org/10.1145/3330430.3333622 

Pardos, Z. A., Fan, Z., & Jiang, W. (2019b). Connectionist recommendation in the wild: On the utility and 

scrutability of neural networks for personalized course guidance. User Modeling and User-

Adapted Interaction, 29(2), 487–525. https://doi.org/10.1007/s11257-019-09218-7 

Pardos, Z. A., & Nam, A. J. H. (2020). A university map of course knowledge. PLOS ONE, 15(9), 

e0233207. https://doi.org/10.1371/journal.pone.0233207 

Rehurek, R., & Sojka, P. (2011). Gensim–python framework for vector space modelling. NLP Centre, 

Faculty of Informatics, Masaryk University, Brno, Czech Republic, 3(2). 

Rodman, E. (2020). A Timely Intervention: Tracking the Changing Meanings of Political Concepts with 

Word Vectors. Political Analysis, 28(1), 87–111. https://doi.org/10.1017/pan.2019.23 

Seah, K. K. C., Pan, J., & Tan, P. L. (2020). Breadth of university curriculum and labor market outcomes. 

Labour Economics, 65, 101873. https://doi.org/10.1016/j.labeco.2020.101873 

Stange, K. (2015). Differential Pricing in Undergraduate Education: Effects on Degree Production by 

Field. Journal of Policy Analysis and Management, 34(1), 107–135. 

https://doi.org/10.1002/pam.21803 

Undergraduate Education Advisory Committee. (2011). Revising the State Core Curriculum: A focus on 

21st century competencies. Texas Higher Education Coordinating Board. 

https://reportcenter.highered.texas.gov/reports/data/revising-the-state-core-curriculum-a-focus-

on-21st-century-competencies/ 

Wells, C. A. (2016). Realizing General Education: Reconsidering Conceptions and Renewing Practice. 

ASHE Higher Education Report, 42(2), 1–85. https://doi.org/10.1002/aehe.20068 



Breadth and Depth of Study  

 

Paulson 31 

 
Appendix A: Classification of Instructional Programs to Disciplines 

 

Discipline 
Two Digit CIP 
Code Two Digit CIP Description 

Business 52 
Business, management, marketing, and related support 
services 

Engineering 14 Engineering 

Engineering 15 Engineering technologies/technicians 

LA&S Humanities 5 Area, ethnic, cultural, and gender studies 

LA&S Humanities 9 Communication, journalism, and related programs 

LA&S Humanities 16 Foreign languages, literatures, and linguistics 

LA&S Humanities 23 English language and literature/letters 

LA&S Humanities 38 Philosophy and religious studies 

LA&S Humanities 39 Theology and religious vocations 

LA&S Humanities 54 History 

LA&S Other 24 
Liberal arts and sciences, general studies, and 
humanities 

LA&S Other 30 Multi/interdisciplinary studies 

LA&S Physical and Biological 
Sciences 26 Biological and biomedical sciences 

LA&S Physical and Biological 
Sciences 27 Mathematics and statistics 

LA&S Physical and Biological 
Sciences 40 Physical sciences 

LA&S Physical and Biological 
Sciences 41 Science technologies/technicians 

LA&S Social Sciences 19 Family and consumer sciences/health sciences 

LA&S Social Sciences 42 Psychology 

LA&S Social Sciences 45 Social sciences 
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Other Professional 1 
Agriculture, agriculture operations, and related 
services 

Other Professional 3 Natural resources and conservation 

Other Professional 4 Architecture and related services 

Other Professional 10 
Communications technologies/technicians and support 
services 

Other Professional 11 
Computer and information sciences and support 
services 

Other Professional 12 Personal and culinary services 

Other Professional 13 Education 

Other Professional 22 Legal professions and studies 

Other Professional 25 Library science 

Other Professional 29 Military technologies 

Other Professional 31 Parks, recreation, leisure, and fitness studies 

Other Professional 43 Security and protective services 

Other Professional 44 Public administration and social service professions 

Other Professional 46 Construction trades 

Other Professional 47 Mechanic and repair technologies/technicians 

Other Professional 48 Precision production 

Other Professional 49 Transportation and materials moving 

Other Professional 50 Visual and performing arts 

Other Professional 51 Health professions and related clinical sciences 

Other Professional 28 Military Science, leadership and operational art 

Other Professional 60 Health professions residency/fellowship programs 

 


